
Name Solution

Computer Architecture

EE 4720

Final Examination

Primary: 6 December 1999, 10:00–12:00 CST
Alternate: 7 December 1999, 15:00–17:00 CST

Alias MPL phone home!!!

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: The code in the table on the next page executes on a dynamically scheduled machine
using reorder buffer entry numbers to rename registers. The implementation performs branch and
branch target prediction.

There are an unlimited number of reorder buffer entries, reservation stations, and functional units.
Integer instructions use the EX functional unit, branches use the B unit, and loads and stores use
the load/store unit, consisting of segments L1 and L2.

When the code in the table starts to execute all register values are available, as shown in the tables
on the next page.

The lw instruction will suffer a miss; it will finish L2 five cycles after entering L2, loading a 100.

The bneq instruction is predicted not taken but is, in fact, taken.

(a) For this subproblem the register file is not backed up when branches are encountered. Using the
tables provided on the next page show a pipeline execution diagram for the code and the changes to
the register map and register file at the end of each cycle. Do not show reservation station numbers
or reorder buffer entries in the pipeline execution diagram itself. The entry number for the next
available reorder buffer entry is 1. Register values are in hexadecimal. Show when instructions
commit or when they are squashed. (15 pts)

(b) Explain how execution would be different if the register file were backed up when branches
are encountered. A second diagram is not necessary, just show where execution differs and how it
differs. (5 pts)

If the register map were backed up the fetching on the correct path would start one cycle after the branch reached WB,
instead of one cycle after it committed. (The one-cycle delay is needed to detect the misprediction and move the correct
address into the PC.

There is one more part.

2

Problem 1, continued: Completed table appears below. Only changes to register map and file are shown.

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

lw r4, 0(r5) IF ID L1 L2 RS L2 WC

add r1, r2, r3 IF ID EX WB C

or r2, r1, r3 IF ID EX WB C

bneq r4, SKIP IF ID RS B WB C

sub r1, r2, r5 IF ID EX WB x

SKIP:

add r2, r1, r2 IF ID EX WB x IF ID EX WC

Register Map

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val. or ROB#

r1 10 #2 50 #5 20 50

r2 20 #3 70 #6 90 70 #5 c0

r3 30

r4 40 #1 100

r5 50

Register File

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Arch. Reg. Val.

r1 10 50

r2 20 70 c0

r3 30

r4 40 100

r5 50

3

Problem 1, continued:

(c) The DLX code in the table below executes on the dynamically scheduled machine described above. The machine uses a load/store
queue and a nonblocking (lockup free) cache as described in class. For this part the cache miss latency is lower: If an instruction in L2
encounters a cache miss it returns to its reservation station for three cycles then returns to L2.

Show the execution of the code in the table below. Show when instructions commit but do not show reservation station or reorder
buffer entry numbers.

The instructions at lines Line1 and Line3 miss the cache. The contents of each register is different. (5 pts)

Completed table appears below.

Pipeline Execution Diagram

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Line1: sw 0(r1), r2 IF ID L1 L2 RS L2 WC

Line2: lw r3, 0(r2) IF ID L1 L2 WB C

Line3: lw r1, 0(r4) IF ID L1 L2 RS L2 WC

Line4: sw 0(r1), r2 IF ID RS L1 L2 WC

Line5: lw r5, 0(r2) IF ID L1 RS L2 WC

Don’t forget part (b)!!!!

4

This problem consists of four parts. For full credit do parts (a), (b), and (c) only. For reduced

credit do parts (a) and (d). If you have time but lack confidence do all parts, the grade will be
max{a + b + c, a + d}.
Problem 2: The code below is run on systems having a 32-bit address space, 1-byte characters,
and using 256-kibibyte (218-byte) caches as described below. Before the code is run the cache is
cold (empty). Only consider accesses to the array, a.

// sizeof(int) = 4 characters
int *a = 0x1000000; // Storage allocated elsewhere.
for(x=0; x<4; x++)

for(i=0; i<512; i++)
for(j=0; j<8; j++)

sum += a[i * 1024 + j];

(a) Find the hit ratio encountered executing the code above on a direct-mapped 218-byte cache
with a line size of 8 characters. How much of the cache is filled? (9 pts)

Each 8-byte line holds two four-byte integers. The innermost loop accesses integers sequentially so initially the hit ratio
will be 1

2 . Each iteration of the middle loop skips ahead 1024 integers. Each iteration of the outermost loop is identical
(the same addresses are used) so maybe there will be more hits in the second iteration.

Because the cache is direct mapped no two lines can have the same index. (An access to a second line would evict the
first.) In the cache the index bits are 3:17. The access to the array varies address bits 2:4 (the j loop) and 12:20 (the i
loop). Three bits, 18, 19, and 20 are in the tag (outside the index). Therefore there will be eight different addresses that
use the same index. When the second iteration of the outermost loop starts the lines needed (in the beginning) will have
been evicted. Therefore the overall hit ratio is 1

2 .

To find the amount of data cached, find the number of bits in the intersection of the index and offset bits with the bits
varied by the code. The intersection is bits 17:12 and 4:2 for a total of 9 bits. The amount of the cache filled is 29 = 512
integers or 2048 bytes.

(b) Suppose the associativity of the cache could be increased while fixing the cache capacity at
218-byte and the line size at 8. What would the hit ratio be if the associativity were 2? What
is the smallest associativity needed to achieve the maximum hit ratio on the code above? Is that
associativity practical? Explain. (8 pts)

The hit ratio is still 1
2 when the associativity is 2. Because doubling the associativity reduces the number of index bits

by one, it would take an associativity of 512 to maximize the hit ratio. This associativity is impractically high.

5

Problem 2, continued:

(c) Suppose any address bits could be used to form the index (set number, address used in the tag
store) and any line size could be used. (Lines must still be contiguous.) In the diagram below show
which address bits should be used (using the rounded boxes) to maximize the hit ratio of the code
above. The capacity of the cache must still be 218-byte. (8 pts)

Figure includes solution.

CPU

Addr

Data

Data

Tag

 Addr

=
Tag

Valid

Hit

Out

Out

32

 Addr

 In
Tag

32 {31:21,7:5}

{20:8}

{31:21,7:5}

{20:8,4:2}

The line size is increased to 32 bytes to minimize cold misses. To eliminate conflict misses the index bits are moved to
positions 20:8 (so that none of the bits varied by the code are in the tag).

6

(d) Optional: Only solve this part if you cannot solve parts (b) and (c). Total credit will be lower.

This part is unrelated to the previous parts. Show how 234 × 32 b memory devices should be
connected to implement a 40-bit address space on a system with four-bit (one-nibble) characters
and a bus width of 64 bits. Include the alignment network. (8 pts)

Solution:

CPU

Addr

Data

Op

Addr Data
37:4

Addr Data
37:4

Align

3:0 39:38

Addr Data
37:4

Addr Data
37:4

32

32

32

32

64

64

64

Addr Data
37:4

Addr Data
37:4

Addr Data
37:4

Addr Data
37:4

32

32

32

32

64

64

64

7

Problem 3: The code below is compiled and run on two machines, one using a one-level branch
predictor and the other using a two-level gselect branch predictor. Both predictors use a 4096-entry
BHT, the gselect predictor uses a 3-branch global history. Each entry holds a 2-bit saturating
counter.

for(i=0; i<100000; i++)
{
Line1: if(a == 1) aa++;
Line2: if(b == 1) bb++;
Line3: if(c == 1) cc++;
Line4: if(i & 0x2) { x++; } /* N N T T N N T T N N T T N N T T ... */
Line5: if(i & 0x4) { y++; } /* N N N N T T T T N N N N T T T T ... */
Line6: if(i & 0x2) { z++; }
}

(a) The ISA has a 32-bit address space, all instructions are 32 bits (four characters) and must be
aligned. How is the address for the BHT in the gselect predictor obtained? Be sure to specify bit
positions. (9 pts)

Since there are 4096 entries the BHT must have 12 address bits. In gshare the global branch history is concatenated with
some instruction address bits. There are 3 bits of global history so 9 instruction address bits are needed. Bits are taken
from the low end, skipping the alignment. In this case bits 10:2.

Note: i & 0x2 is the bitwise and of the value of i and 2. (0x2 is the hexadecimal representation of 2). The if is taken
when the second bit of i is 1. For example:

i i & 0x2
000 0 (False)
001 0 (False)
010 10 (True)
011 10 (True)
100 0 (False)
101 0 (False)
110 10 (True)
111 10 (True)

Note that a value of zero is false and any non-zero value is true.

(b) Assume that exactly one branch instruction is generated for each if statement and that the com-
piler does no optimizing. What is the prediction accuracy for each of the last three if statements
using the one-level predictor after a large number of iterations? (8 pts)

The branches at Line4 and Line6 suffer a prediction “accuracy” of 25% and Line5 has an accuracy of 50%.

(c) As above, assume that exactly one branch instruction is generated for each if statement and
that the compiler does not do any optimizing. What is the prediction accuracy for each of the
last three if statements using the gshare predictor after a large number of iterations? Hint: The
solution to this part does not require tedious computation or the construction of lengthy tables.
(8 pts)

The global history is not much help to the branch at Line4 because the preceding three branches are always taken
the same way, so the prediction accuracy remains 25%. Knowing whether the branch at Line4 was taken is no use in
predicting the branch at Line5, so its accuracy remains at 50%. The outcome of Line4 is useful in predicting Line5,
in fact it can be predicted with 100% accuracy.

8

Problem 4: Answer each question below.

(a) Synthetic instruction clr 12(r2) writes a zero to the memory location at address 12 + r2.
How could it be added to DLX? (5 pts)

This would correspond to DLX instruction sw 12(r2),r0.

(b) Besides the large amount of storage, what would be the disadvantage of a RISC ISA that had
1048576 (220) integer (general-purpose) registers? (5 pts)

It would take 20 bits to specify each operand and so the instructions would be too large.

(c) Why would it be inappropriate to add a memory indirect load instruction to DLX. (For example,
lw r1,@(r2).) Justify your answer for the statically scheduled DLX implementation. Weigh the
complexity of changes needed for the implementation against expected benefit over a software-only
solution. Be brief. (5 pts)

Such an instruction would require two accesses to memory. In the static DLX implementation this would require either a
second MEM stage (too expensive and only used for a few instructions) or the instruction would have to make two passes
through MEM, complicating the simple integer pipeline. Two load instructions would be just as fast.

9

(d) The code below runs on a dynamically scheduled 4-way superscalar machine with perfect branch
target prediction and a cache that never misses. There are an unlimited number of reorder buffer
entries, reservation stations, and functional units. This machine is not 100% perfect: its fetch
mechanism is the type described in class. What is the minimum and maximum CPI executing the
code below for a large number of iterations? Explain the conditions under which minimum and
maximum CPI are encountered. (5 pts)

LOOP:
lb r1, 0(r2)
addi r2, r2, #1
bneq r1, LOOP

The minimum CPI is 1
3 , the maximum CPI is 2

3 . The minimum CPI is encountered when all three instructions lie on one
(aligned) fetch block, as when LOOP is a multiple of 16. The maximum occurs when the instructions fall on two fetch
blocks.

(e) What is the difference between a write-through cache and a write-back cache? Which one needs
a dirty bit and why? (5 pts)

In a write-through cache stores are always immediately written through to the next level of the hierarchy, for example, to
memory. In a write back cache data is not written to the next level of the hierarchy until a line is replaced. (Or under
other circumstances covered in later courses.)

10

