
06-1 06-1DLX Implementation

Set currently incomplete.

Material from chapter 3 of H&P.

06-1 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-1

06-2 06-2Unpipelined Implementation

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write
back

B

PC

4

ALU

16 32

Add

Data
memory

Registers

Sign
extend

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

Zero?
Branch

taken
Cond

NPC

lmm

ALU
output

IR
A

LMD

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock
cycles.

06-2 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-2

06-3 06-3
Pipelined Implementation

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

06-3 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-3

06-4 06-4
Pipeline Details

Pipeline Segments

Divide pipeline into segments.

Each segment occupied by at most one instruction.

At any time, different segments can be occupied by different instructions.

Segments given names: IF, ID, EX, MEM, WB

Pipeline Registers

Registers written at end of each cycle.

To emphasize role, drawn as part of dividing bars.

Registers named using pair of segment names and register name.

For example, IF/ID.IR, ID/EX.IR, ID/EX.A.

06-4 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-4

06-5 06-5Pipeline Execution Diagram

Pipeline Execution Diagram

Used to show how instructions execute.

Along horizontal axis show time, vertical axis static instructions.

Label points with segment that instruction is in.

Cycle 0 1 2 3 4 5 6
add r1, r2, r3 IF ID EX MEM WB
and r4, r5, r6 IF ID EX MEM WB
lw r7, 8(r9) IF ID EX MEM WB

A vertical slice (e.g., at cycle 3) shows processor activity at that time.

In such a slice a segment should appear at most once . . .

. . . if it appears more than once execution not correct . . .

. . . since a segment can only execute one instruction at a time.

06-5 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-5

06-6 06-6Instruction Decoding and Pipeline Control

Pipeline Control

Setting control inputs to devices including . . .

. . . multiplexor inputs . . .

. . . function for ALU . . .

. . . operation for memory . . .

. . . whether to clock each register . . .

. . . et cetera.

Options for controlling pipeline:

• Magic Cloud

• Decode in ID
Determine settings in ID, pass settings along in pipeline latches.

• Decode in Each Stage
Pass opcode portions of instruction along.

Decoding performed as needed.

06-6 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-6

06-7 06-7

Real systems decode in ID.

For clarity, diagrams misleadingly imply decoding in stage needed . . .

. . . by passing entire instruction along.

06-7 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-7

06-8 06-8Pipeline Hazards

A hazard is a potential execution problem due to the hardware.

Hazards are caused by overlapping of instructions.

Hazards are avoided using interlocks or other means.

Hazard Types:

• Structural Hazard
Needed resource not available.

• Data Hazard
Needed value (written by previous instruction) not available.

• Control Hazard
Needed instruction not available or wrong instruction executing.

06-8 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-8

06-9 06-9Data Hazards

Identified by acronym indicating correct operation.

• RAW: Read after write.

• WAR: Write after read.

• WAW: Write after write.

DLX implementation above only subject to RAW hazards.

RAR not a hazard since read order irrelevant (without an intervening write).

06-9 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-9

06-10 06-10Interlocks

When threatened by a hazards:

• Stall (Pause a part of the pipeline.)
Stalling avoids overlap that would cause error.

This does slow things down.

• Add hardware to avoid the hazards.
Details of hardware depend on hazard and pipeline.

Several will be covered.

06-10 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-10

06-11 06-11
Structural Hazards

Cause: two instructions simultaneously need one resource.

Solutions:

Stall.

Duplicate resource.

Covered in more detail with floating-point instructions.

06-11 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-11

06-12 06-12Data Hazards

Chapter-3 DLX Subject to RAW Hazards.

Execution of code with two hazards, on r1 and r4.

Hazard avoided by stalling.

add r1, r2, r3 IF ID EX MEM WB
sub r4, r1, r5 IF ID ---------> EX MEM WB
and r6, r1, r8 IF ---------> ID EX MEM WB
xor r9, r4, r11 IF ID -----> EX MEM WB

06-12 EE 4720 Lecture Transparency. Formatted 10:36, 12 February 1999 from lsli06. 06-12

