
EE 4720 Homework 2 Due: 19 February 1999

The SPARC assembly language program below is used in the problems that follow. SPARC
register names are %g0-%g7, %i0-%i7, %l0-%l7, and %o0-%o7; and %g0 is a zero register (like r0 in
DLX). The destination for arithmetic, logical, and load instructions is the rightmost register (add
%l1,%l2,%l3 means %l3=%l1+%l2). SPARC uses a condition code register and special condition-
code-setting instructions for branches. Branches include a delay slot.

LOOP:
ld [%l1], %l2 ! Load l2 = MEM[l1]
addcc %l2, %g0, %g0 ! g0 = g0 + l2. Sets cond. codes. Note: g0 is zero reg.
be DONE ! Branch if result zero.
nop ! Fill delay slot with nop.
add %l6, %l2, %l6 ! l6 = l6 + l2
andcc %l3, 1, %g0 ! g0 = 1 & l3. Sets cond. codes. Note: g0 is zero reg.
be SKIP1
nop
add %l4, 1, %l4
SKIP1:
subcc %l3, 1000, %g0
bpos SKIP2 ! Branch if >= 0;
nop
add %l4, %l3, %l4
SKIP2:
andcc %l3, 1, %g0
be SKIP3
nop
add %l4, %l4, %l4
SKIP3:
add %l1, 4, %l1
ba LOOP ! Branch always. (Jump.)
nop
DONE:

Problem 1: An execution of the code above on a SPARC implementation takes 1000 cycles. The
dynamic instruction count is ICall of which ICnop instructions are nop’s. Consider two ways of
computing CPI:

CPIA =
t

ICall
and CPIB =

t

ICall − ICnop
,

where t is the execution time in cycles. Which is better? Justify your answer; an argument for
either formula can be correct.

CPIA is better because it measures how efficiently a processor executes instructions, including nop instructions
which are part of the code.

1

Problem 2: SPARC branches have a one-instruction delay slot, in the code above they are filled
with nop’s. Re-write the code filling as many slots with useful instructions as possible, reducing
the number of instructions in the program.

Solution:

ld [%l1], %l2 ! Load l2 = MEM[l1]
LOOP:
addcc %l2, %g0, %g0 ! g0 = g0 + l2. Sets cond. codes. Note: g0 is zero reg.
be DONE ! Branch if result zero.
andcc %l3, 1, %g0 ! g0 = 1 & l3. Sets cond. codes. Note: g0 is zero reg.
add %l6, %l2, %l6 ! l6 = l6 + l2
be SKIP1
subcc %l3, 1000, %g0
add %l4, 1, %l4
SKIP1:
bpos SKIP2 ! Branch if >= 0;
andcc %l3, 1, %g0
add %l4, %l3, %l4
SKIP2:
be SKIP3
add %l1, 4, %l1
add %l4, %l4, %l4
SKIP3:
ba LOOP ! Branch always. (Jump.)
ld [%l1], %l2 ! Load l2 = MEM[l1]
DONE:

Problem 3: Re-write the program in DLX, taking advantage of DLX’s use of general purpose
registers for specifying branch conditions.

Solution:

LOOP:
lw r2, 0(r1)
beqz r2, DONE
add r6, r2, r6
andi r10, r3, #1
beqz r10, SKIP1
addi r4, r4, #1
SKIP1:
sgei r11, r3, #1000
bneq r11, SKIP2
add r4, r3, r4
SKIP2:
beqz r10, SKIP3 ! r10 computed before SKIP1.
add r4, r4, r4
SKIP3:
addi r1, r1, #4
beqz r0, LOOP
DONE:

2

Problem 4: The program below executes on the DLX implementation shown below. The com-
ments show the results of the xori, or, and lw instructions.

! Initially, r1=11, r2=22, r3=33, etc.
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0
START: ! START = 0x50
xori r1, r9, #7 !99 ⊕ 7 = 100
or r2, r3, r4 !33 or 44 = 45
lw r5, 9(r6) !Mem[9+66]=42
sw 10(r7), r8
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0
addi r0, r0, #0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that xori is in instruction fetch. The first two
columns are completed, continue filling the table up until the sw instruction finishes writeback.
Ignore values which are not used and which depend on the func field of type-R instructions. Values
which are not used and don’t depend on the func field should be shown. The output of the data
memory is zero when a store or no memory operation is performed. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x5c 0x60 0x64 0x68 0x6c 0x70 · · ·
IF/ID.IR addi xori or lw sw addi · · ·
Reg. Chng. r0← 0 r0← 0 r0← 0 r0← 0 r0← 0 r1← 100r2← 45 r5← 42 X r0← 0 · · ·
ID/EX.IR addi addi xori or lw sw addi · · ·
ID/EX.A 0 0 99 33 66 77 0 · · ·
ID/EX.B 0 0 11 44 55 88 0 · · ·
ID/EX.IMM 0 0 7 X 9 10 0 · · ·
EX/MEM.IR addi addi addi xori or lw sw addi · · ·
EX/MEM.ALU 0 0 0 100 45 75 87 0 · · ·
EX/MEM.B 0 0 0 11 44 55 88 0 · · ·
MEM/WB.IR addi addi addi addi xori or lw sw addi · · ·
MEM/WB.ALU 0 0 0 0 100 45 75 87 0 · · ·
MEM/WB.MD 0 0 0 0 0 0 42 0 0 · · ·

3

