
Name

Computer Architecture

EE 4720

Final Examination

5 May 1999, 7:30–9:30 CDT

Alias

Problem 1 (25 pts)

Problem 2 (25 pts)

Problem 3 (25 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

Problem 1: With the following extension to the DLX ISA a program can get a count of how many
times a particular address has been read or written by load and store instructions. The count is
kept in a load/store counter (LSC) which is incremented whenever a load or store instruction uses
a particular effective address. Two new instructions are added, setlsc (type I) and getlsc (type
R). Instruction setlsc r1,r2+#3 sets the effective address to r1 and initializes the counter to
r2+#3. Instruction getlsc r3 copies the LSC to r3.

For example, consider the code below. The first instruction, setlsc, initializes the count to zero
and sets the address to watch to the value of r1. When lw executes the count will be incremented
because the addresses match. If r1=r10-8 then the count will be incremented again when sw
executes, otherwise the count will remain at one. The getlsc instruction will load r2 with a two,
if r1=r10-8, or a one, otherwise.
setlsc r1, r0+#0
lw r5, 0(r1)
sw 8(r10), r11
getlsc r2
add r3, r3, r2
add r4, r4, r2

(a) Show the changes necessary to add the two instructions to the pipeline below. (The illustration
and program are repeated on the next page for convenience.)(20 pts)

• Include the hardware, including control, needed to set, increment, and read the LSC.

• The code above (and any other valid DLX program) must execute correctly and with as
few stall cycles as possible.

• The solution can use basic gates, multiplexors, instruction recognizers (=getlsc ,

=setlsc , =load/store , etc.), equality testers (=), incrementers, and similar logic.

• Equality testers produce their output in 1
2 cycle, instruction recognizers produce an

output in much less than one cycle.

(b) If the solution above works correctly when instructions raise exceptions you’ve solved this part
too. Otherwise, explain how an exception could result in incorrect execution and how it might be
fixed. (Of course, the pipeline handled exceptions correctly before the changes for the first part.)
(5 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Use the next page for the solution.

2

Problem 1, continued:

setlsc r1, r0+#0
lw r5, 0(r1)
sw 8(r10), r11
getlsc r2
add r3, r3, r2
add r4, r4, r2

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

3

Problem 2: Provide pipeline execution diagrams for the code and machines indicated below. All
machines have the following features in common:

• Dynamically scheduled processor using register renaming with a reorder buffer.

• Branch and branch target prediction (but no branch folding).

• Speculative execution past predicted branches with the reorder buffer used for mispre-
diction recovery.

• Functional unit inputs connect to CDB (and reservation stations).

• Functional units and reservation stations are as listed below. The quantity of functional
units is given for both an ordinary single-issue machine and a 4-way superscalar machine.

Quantity Functional Abbr. Latency Initiation Reservation
Single 4-Way Unit Interval Station Nums

1 1 Load/Store L 1 1 0-1
1 4 Integer EX 0 1 2-3,13-15
1 2 F.P. Add A 1 1 4-6
1 1 F.P. Mul. M 7 2 7-8
1 1 Branch BR 0 1 9-10
1 1 F.P. Divide DIV 22 23 11-12

(a) Show the execution of the code below on a single-issue (not superscalar) machine as described
above.

The branch is predicted taken and its target is correctly predicted. However, the branch is in
fact not taken. Show execution until the last instruction completes. Show when each instruction
commits; indicate canceled instructions with an X. (Note: ltf f0,f3 sets the floating-point
condition register to f0<f3; bfpt SKIP branches to SKIP if the floating-point condition is true.
The ltf instruction uses the FP add unit. (9 pts)

addf f0, f1, f2

ltf f0, f3

bfpt SKIP

lf f0, 0(r1)

SKIP:

addf f4, f0, f5

addi r1, r1, #4

4

(b) Show the execution of the code below on a single-issue (not superscalar) machine as described
above. The branch is correctly predicted not taken. Show execution until the last instruction
completes. Show when each instruction commits. Show the state of the reorder buffer when addf
reaches writeback. (8 pts)

multf f0, f1, f2

ltf f0, f3

bfpt SKIP

lf f0, 0(r1)

SKIP:

addf f4, f0, f5

addi r1, r1, #4

5

(c) Show the execution of the code below on a 4-way superscalar processor as described above.
Instructions are fetched in aligned blocks of four. The branch is correctly predicted taken. All
targets are correctly predicted. Show execution until the last instruction completes. Show when
each instruction commits. (8 pts)

LINE0: ! LINE0 = 0x100c

beqz r1, LINE1

addf f0, f0, f1

j LINE2

LINE1:

addf f0, f0, f2

add r2, r2, r3

and r2, r2, r4

LINE2:

addf f0, f0, f3

addf f5, f5, f0

addf f6, f6, f0

addf f7, f7, f0

addf f8, f8, f0

and r5, r6, r7

or r8, r9, r10

xor r11, r12, r13

sub r14, r15, r16

6

Problem 3:

(a) A system is equipped with the cache shown below.

CPU

Addr

Data

Data

 Addr

Out

Tag

 Addr

=

4:10

Tag

Valid

Data

 Addr

Tag

 Addr

=Tag

Valid

128

Hit

Data

 Addr

Tag

 Addr

=Tag

Valid

7:107:10

4:10 4:10

7:10

48

Out

Out

Out

Out

Out

Determine a value for each of the following. Be sure to specify units (bits, bytes, etc.) (10 pts)

Character Size (Size of item at a single address.):

Associativity:

Block Size:

Number of Sets:

Cache Capacity (Amount of data that can be stored.):

Memory Needed to Implement Cache:

7

The problems on this page are for the cache described below, not the cache from the previous page.

Consider a system with a 64-bit address space (a = 64) which addresses the usual 8-bit (1-byte)
characters (c = 8) and is equipped with a 2-way set-associative cache with 64-byte lines and 256
sets. The cache uses LRU replacement.

(b) Initially the cache is empty. What is the hit ratio for accesses to the array in the code below.
Ignore all other memory accesses. (7 pts)

extern char *the_array;
// Note: sizeof(char) = 1 byte.
// &the_array[0] = 0x10000
for(i=0; i<16; i++) a += the_array[i * 8];

(c) Choose values for i_limit and stride so that the program below completely fills the cache
using the minimum number of accesses. Assume the cache is initially empty and only include
accesses to the array. (8 pts)

extern char *the_array;
// Note: sizeof(char) = 1 byte.
// &the_array[0] = 0x10000

int i_limit =

int stride =

for(i=0; i<i_limit; i++) a += the_array[i * stride];

8

Problem 4: Answer each question below.

(a) Show how the DLX instructions below are encoded. That is, write the instructions as numbers.
Make up numbers for opcode and func fields, but use actual values for other fields. Hint: If you
can’t remember field sizes look at the illustration for problem 1. (5 pts)

beqz r7, SKIP
add r1, r2, r3
xori r4, r5, #6

SKIP:

(b) Describe an advantage of VLIW over superscalar processors. Describe a disadvantage of VLIW
over superscalar processors. (Use the VLIW ISA described in class.) (5 pts)

(c) What is a translation lookaside buffer (TLB) and what does it do? (5 pts)

9

(d) Show how an address can be constructed for the branch history table in an (m,n) two-level
correlating branch predictor. (Two ways were presented in class, show either one.) (5 pts)

(e) Re-write the program below using DLX instructions. Additional registers may be used. (5 pts)

lw r1,@(r2) ! Memory indirect addressing.
add r3, r4, (r5) ! Register indirect addressing.
ld f0, (0xfedcba01) ! Direct addressing.

10

