
EE 4720 Homework 1 Solution Assigned: Spring 1997

Problem 1: (2 pts) Just plug the run times into these equations

AM =
1

n

nX
i=1

ti HM =

 
1

n

nX
i=1

1

ti

!
�1

GM = n

vuut nY
i=1

ti

to obtain 42.6, 13.8, and 27.7 for the arithmetic, harmonic, and geometric mean (respectively) of
the program run times on the base machine and 18.6, 4.8, 11.7 for the arithmetic, harmonic, and
geometric mean (respectively) of the program run times on the test machine.

Problem 2: (3 pts) The key phrase in the problem is, \each type of program is of equal impor-
tance." This means that, say, if machine A runs the compilers, A1, A2, and A3, 10% faster, and
machine B runs the databases 10% faster, both would have the same TigerMark rating (assuming
they ran the other programs as fast as the base machine). A common, and incorrect, solution was
taking the geometric mean of the speedups of each program. That is, 
tA1(Base)

tA1(Test)
�

tA2(Base)

tA2(Test)
�

tA3(Base)

tA3(Test)
�

tB1(Base)

tB1(Test)
�

tB2(Base)

tB2(Test)
�

tC1(Base)

tC1(Test)
�

tC2(Base)

tC2(Test)
�

tC3(Base)

tC3(Test)
�

tC4(Base)

tC4(Test)

!1=9
:

Because the number of programs of each type is di�erent a 10% change in each program of one
type will have a di�erent impact than a 10% change in each program of another type, which is not
acceptable in this case.

In one correct solution, the average speedup of programs of each type is computed, yielding
three speedups. These three speedups are averaged to get the TigerMark. Symbolically,

TM(Test) =
1

3

 
1

3

�
tA1(Base)

tA1(Test)
+

tA2(Base)

tA2(Test)
+

tA3(Base)

tA3(Test)

�
+

1

2

�
tB1(Base)

tB1(Test)
+

tB2(Base)

tB2(Test)

�
+

1

4

�
tC1(Base)

tC1(Test)
+

tC2(Base)

tC2(Test)
+

tC3(Base)

tC3(Test)
+

tC4(Base)

tC4(Test)

�!
:

Problem 3: Another possible bene�t is code density. That is, it's quite likely that the space
needed for the single new instruction is less than the �ve instructions it replaces, so less space is
needed to store the program.

One drawback is that the bene�t does not justify the cost. The new instruction may only
be rarely used while the hardware cost might be substantial.

Another drawback is that it might be di�cult to quickly execute the new instruction
on future implementations. The instruction might do 100% of what the programmer wants and
10% more. The 10% more might preclude a faster future implementation. A sequence of simpler
instructions might do exactly what the programmer wants and could be executed quickly.

Wrong answers:
(Bene�t) Lower instruction count means lower execution time. This is wrong because it

implies that fewer instructions will always lead to improved performance. (In this case it does.)
(Drawback) Lower instruction execution rate (MIPs). This is wrong because lower or

higher MIPs does not mean lower or higher performance in general, and in this case.

1



(Drawback) Higher CPI. This is wrong because lower or higher CPI does not mean lower
or higher performance in general, and in this case. Note that MIPs = 106=CPI.

Problem 4: (3 pts) For implementation A and compiler I, average instruction execution time is
2:625CPI = 2:625�s (either answer is acceptable). Total execution time is 21:0ms. For imple-
mentation A and compiler II, average instruction execution time is 2:595CPI = 2:595�s. Total
execution time is 21:8ms. In these cases compiler II had the lower CPI (good) but the higher
execution time (bad), and so CPI is not a good predictor.

For implementation B and compiler I, average instruction execution time is 2:625CPI =
2:625�s (either answer is acceptable). Total execution time is 21:0ms. For implementation B and
compiler II, average instruction execution time is 2:405CPI = 2:405�s. Total execution time is
20:2ms. In these cases compiler II had the lower CPI and the lower execution time. CPI does agree
with execution time here.

Wrong answer explained: CPI = (2 + 2+ 3)=3 = (3 + 1 + 3)=3 = 7=3 is wrong because it
gives equal weight to all instruction categories. Average instruction execution time (CPI) is based
on the mix of instructions actually executed, so frequently executed instructions should be counted
more than infrequent ones.

2


