Fall 2013 Final Exam Review

When / Where

Monday, 9 December 2013, 10:00-12:00 CST
1110 Patrick F. Taylor Hall (Here)

Conditions

Closed Book, Closed Notes

Bring one sheet of notes (both sides), 216 mm × 280 mm.

No use of communication devices.

Format

Several problems, short-answer questions.
Resources

Lecture “slides” used in class: http://www.ece.lsu.edu/ee3755/ln.html

Study Guides: Carry-Lookahead, Synthesis

Solved tests and homework: http://www.ece.lsu.edu/ee3755/prev.html
Study Recommendations

Study this semester’s homework assignments. Similar problems will probably appear on the exam.

Solve Old Problems—memorizing solutions is not the same as solving.

Following and understanding solutions is not the same as solving.

Use the solutions for brief hints and to check your own solutions.

Previous Exams

Be sure to look at previous midterm and final exams.
Verilog—Key Skills

Given a design in one form, write design in another:

- Explicit Structural
- Implicit Structural
- Synthesizable Behavioral
- Logic Diagram
Verilog, The Simulation Language

Value Set

Know what x and z mean and how to generate and use them.

Modules and Instantiation

Continuous Assignment and Expressions

Implicit v. Explicit Structural Descriptions

Behavioral Code
Verilog, Design Flow and Synthesis

HDL Terminology

Brown & Vranesic, Section 2.9

Design Flow

Inference and Libraries

Combinational Synthesis

Sequential Synthesis
Computer Arithmetic

Integer Adders

Carry Lookahead

Brown & Vranesic, Section 5.4

Hierarchical Carry Lookahead Adders
Integer Multipliers

Patterson & Hennessy, 4th Ed., Section 3.3

Simple and streamlined multipliers.

Ordinary radix-*n* multiplier and Booth recoding multiplier.

Integer Dividers

Patterson & Hennessy, 4th Ed., Section 3.4
FP Arithmetic

Patterson & Hennessy, 4th Ed., Section 3.5

Working with numbers in binary scientific notation.

IEEE 754 Format

FP Adder
MIPS

Definitions

Patterson & Hennessy, 4th Ed., Sections 2.1, 2.2, 2.12

Integer Arithmetic and Logical Instructions

Patterson & Hennessy, 4th Ed., In chapter 2

Control Transfer Instructions

Patterson & Hennessy, 4th Ed., In chapter 2

Instruction Coding

Patterson & Hennessy, 4th Ed., Section 2.5

Pseudo Instructions

Patterson & Hennessy, 4th Ed., Section 2.12
MIPS Programming Skills

Write programs.

Read programs.

Understand instruction formats.
MIPS Implementations

MIPS Functional (Single-Cycle) Simulator

MIPS Very Simple Implementation
MIPS Functional Simulator

Executes each instruction in a single cycle.

Because of single-cycle execution needs extra hardware:

Two memory ports (one for instruction fetch, one for loads and stores).

A separate adder for arithmetic instructions and branch targets.

MIPS Very Simple Implementation

Executes instructions in multiple cycles.

Same hardware can be re-used, such as memory port and ALU.
MIPS Implementation Skills

Implement a new instruction.

Determine what an instruction does by looking at Verilog.

Sketch hardware synthesized from Verilog description.