LSU EE 3755

Problem 0: Complete this problem as soon as possible. Follow the instructions for Account Setup and Verilog Homework Workflow on http://www.ece.lsu.edu/ee3755/proc.html.

When the account is set up copy the assignment into your class account using the following commands:

```
[ee37551@frost ~]$ cd ~
[ee37551@frost ~]$ cp -r /home/faculty/koppel/pub/ee3755/hw/2013f/hw04 .
[ee37551@frost ~]$ cd hw04
[ee37551@frost hw04]$ ls
Makefile hdl.var hw04.v syn-prob1.cmd syn-prob2.cmd
```

The first two commands above copy the files, the last two verify that they have been copied by showing a directory listing.

Start Emacs and load the assignment, hw04.v, into an Emacs buffer. If the instructions were followed correctly the Verilog comments should appear in red and the text "LSU EE 3755..." should appear red bold. There should also be an "EE 3755" entry on the menu bar.

When a Verilog file is loaded the EE 3755 menu should contain one entry for simulating and two for synthesizing, one for each problem. Selecting "Simulate" from the menu should run the Verilog simulator, output will appear in a pane (called a *window* in Emacs parlance) below the window in which the Verilog code appears. For the unmodified assignment the following lines should appear near the end of the output:

Error in Problem 2 module for input 0xb000: x != 12 (correct) Finished with 1000 tests, 1000 Prob-1 and 1000 Prob-2 errors found.

The Finished with line above indicates that the Verilog modules where tested with 1000 different inputs and that the module for problem 1 had 1000 errors (failed every test), and the same for problem 2. When the problems are solved correctly the line will read:

Finished with 1000 tests, 0 Prob-1 and 0 Prob-2 errors found.

The command to simulate runs tests on both modules (see problems below). For synthesis, there is a separate command for each problem (see the menu). Try out a synthesis command by switching to the buffer visiting hw04.v and selecting Synthesizing Problem 1 from the EE 3755 menu. The output of the synthesis program appears in two places, in the window below the Verilog code and in a file named rc.logX, where X is either not present or a number.

The synthesis output will start with:

```
-*- mode: compilation; default-directory: "~/teach/co13f/hw/hw04/" -*- Compilation started at Mon Oct 21 12:09:37
```

```
make prob1
rc -E -nogui -files syn-prob1.cmd
Checking out license 'RTL_Compiler_Physical'... (0 seconds elapsed)
License RTL_Compiler_Physical checkout failed.
Checking out license 'RTL_Compiler_Ultra'... (0 seconds elapsed)
```

Cadence Encounter(R) RTL Compiler Version RC10.1.306 - v10.10-s357_1 (64-bit), built Apr 10 2012

For the unmodified assignment the synthesis output will end with:

No paths found.

Normal exit.

The synthesis program output contains three important things for this assignment: synthesis errors (if any), an area report, and a timing report. The sample outputs shown below will be based on the completed assignment.

Almost anything that is an error for the Verilog simulator is also an error for the synthesis program. But, as discussed in class, there are many things valid in Verilog that are not valid for the synthesis program. The following output indicates that there were no synthesis errors:

```
Elaborating top-level block 'czc16_prob1' from file 'hw04.v'.
Done elaborating 'czc16_prob1'.
Synthesis succeeded.
```

Here is an example with errors:

```
Elaborating top-level block 'czc16_prob2' from file 'hw04.v'.
Error : Unsupported 'for' statement initialization assignment. [CDFG-453] [elaborate]
                : The unsupported initialization assignment is in file 'hw04.v' on line 126.
                : The initialization expression in a 'for' statement must evaluate to a constant when synthesiz-
ing the design.
Module 'czc16_prob2' contains errors and cannot be elaborated.
Encountered problems processing file: syn-prob2.cmd
```

If synthesis is successful there will be an area report, it appears under the text "Area Report Below." Here is a sample:

*** Area Report Below **

=======================================	=======	=============	===========	===========	=====	====				
Generated Generated Module: Technology Operating Wireload m Area mode:	Encc Oct czc1 y: osuC ons: typi encl timi	Encounter(R) RTL Compiler RC10.1.306 - v10.10-s357_1 Oct 21 2013 01:10:46 pm czc16_prob1 osu035_stdcells typical (balanced_tree) enclosed timing library								
Instance	Cells	Cell Area	Net Area	Wireload						
czc16_prob1	50	5240	0	<none></none>	(D)	<	AREA	OF	ENTIRE	DESIGN
c3	8	832	0	<none></none>	(D)					
c2	8	832	0	<none></none>	(D)					
c1	8	832	0	<none></none>	(D)					
c0	8	832	0	<none></none>	(D)					

The total area is the first line listed on the table. For the example above, 5240 includes the area of the four czc4 modules instantiated in czc16_prob1.

The timing appears under "Timing Report Below," here is a sample:

*** Timing Report Below **

Wireload mode: Area mode:		enclosed timing library							=			
Pin	Туре	Fanout	Load (fF)	Slew (ps)	Delay (ps)	Arrival (ps)						
a[7] c1/a[3]	in port	2	48.3	0	+0	0	R					
g86/A					+0	0						
g86/Y	NOR2X1	2	40.5	138	+125	125	F					
g2/B					+0	125						
g2/Y c1/lz[2]	AND2X1	2	39.9	115	+211	336	F					
g256/A					+0	336						
g256/Y g252/B	NAND2X1	3	72.7	253	+214 +0	550 550	R					
g252/Y g244/B	NOR2X1	3	81.2	241	+235 +0	785 785	F					
g244/Y g242/B	AOI22X1	1	18.0	138	+130 +0	915 915	R					
g242/Y	NAND2X1	1	0.0	54	+28	943	F					
lz[0]	out port				+0	943	F	<	DELAY	OF	ENTIRE	MODULE
Timing sl Start-poi End-point	lack : UNC int : a[7] t : lz[C	CONSTRAID	NED									

The table above shows timing along the critical path, the delay for the circuit is the *last* entry in the table, 943 ps. Ignore the warning about timing problems, it does not apply to isolated combinational logic.

To make it easier to move between windows please take time to familiarize yourself with some basic Emacs commands:

- Switching between buffers. (Use the Buffers menu.)
- Removing a Window (what Emacs refers to as a window, other programs refer to as a pane). (From the File menu select Remove Other Windows.)

Problem 1: The consecutive zero count, CZC, or zero count for short, of an *n*-bit integer is the number of consecutive zeros in the number's base 2 representation, counting starting at the least significant bit. For example the CZC of 1011000_2 is 3, the CZC of 1011_2 is 0, and the CZC of 8-bit integer 0_2 is 8.

Module czc4, in hw04.v, computes the zero count of a four-bit integer. Input a is the four-bit integer, output lz is the zero count.

(a) Draw the hardware that might be synthesized for this module when no optimization is done. Do this yourself, do not just look in the file hw04-prob1-syn-inferred.v which will show what the Cadence Encounter program really did infer.

(b) Draw a schematic of hand optimized code. Again, don't look at the synthesis program output. Hint: Consider each bit of 1z separately. For example, the LSB of 1z will be 1 when a[0] is 0 and a[1] is 1 or when a[0] to a[2] are zero and a[3] is 1. Draw the logic using this reasoning.

(c) Notice that module $czc16_prob1$ is empty. That is, the ports are declared but they are not connected to anything. As the name and comments suggest, the output of the module, lz, should

be the zero count of its 16-bit input, a. Using four czc4 modules and additional synthesizable implicit or explicit structural code complete czc16_prob1 so that it computes the zero count.

The module can be tested for correct Verilog selecting Simulate from the EE 3755 menu. Assuming the Verilog compiled and ran, near the end a line will start with "Finished with 1000 tests". The number to the left of "Prob-1" will be zero if the module works correctly. If it's no-zero the first five incorrect results will be displayed further above.

Module czc16_prob1 has convenient check boxes listing things that need to be done or taken into account. Please review them after finishing.

Problem 2: Module czc16_prob2 is also supposed to compute the zero count of an integer and is also empty. Complete the module using synthesizable *behavioral* code.

As with the first problem, make sure that the code produces the correct results and synthesizes. Use the checkboxes to make sure that nothing is omitted.

Problem 3: In this problem your delay expectations for the modules from the two previous problems will be compared with the timing provided by the synthesis program.

(a) Show the cost and delay (timing) of each design provided by the synthesis program.

(b) Which of the two designs do you think should be faster? Why?

(c) If your answer above does not agree with the synthesis program provide a possible answer (or maybe "fix" your Verilog).