
LSU EE 3755 Homework 1 Solution Due: 11 September 2013

Problem 1: Draw a schematic of the logic circuit described by the Verilog code below.

module pie(x, y, a, b, c);

input a, b, c; output x, y;

wire t1, t2;

xor x1(t1,a,b);

not n1(x,t1);

and a1(t2,x,c);

or o1(y,t2,b);

endmodule

Solution:

a

b

c

x

y

t1
t2

pie

1

http://www.ece.lsu.edu/ee3755/

Problem 2: Draw a schematic of the logic circuit described by the Verilog module twoterms

below. Note: this problem is very similar to one given last year. Try to solve this one before

looking at the solution to last year’s problem.

• Show the contents of each instantiated module. (That is, do not just show a box labeled
term1100 or twoterms.)

• Show using AND, OR, and NOT gates, inferring the correct gate for the Verilog operators
used in the assign expression.

• To the extent possible, label the diagram using the port names defined by twoterms (x, i,
j, k, and m).

module term1100(x,a,b,c,d);

input a, b, c, d; output x;

assign x = a && b && !c && !d;

endmodule

module twoterms_bundle(x,a);

input [3:0] a; output x;

wire tx101, t100x;

term1100 t0(tx101, a[2], a[0], a[1], 1’b0);

term1100 t1(t100x, a[3], a[3], a[1], a[2]);

or o1(x, tx101, t100x);

endmodule

module twoterms(x,i,j,k,m);

input i,j,k,m; output x;

wire [3:0] bundle;

assign bundle[3:0] = {i,j,k,m};

twoterms_bundle t(x,bundle);

endmodule

Solution appears below. The labels defined in module twoterms appear in green bold, they are shown in modules
twoterms bundle and in term1100 alongside the signal names defined in the respective modules.

t1

a

b

c x

term1100

t0

a
[0
]

0
:0

a
[1
]

1
:1

a
[2
]

2
:2

a
[3
]

3
:3

4

tx101

t100x

x

a

1 1 1 1

i

j

k

m 1

1

1

1

twoterms_bundle

twoterms

x

This is 4 wires (4 bits).

This is 1 wire (1 bit).

Port names de ned by twoterms.

b
u
n
d
le

lsb

msb

lsbmsb

t

d

a

b

c
x

term1100

d

0

m

m

k

k

j

i
i

i
i
i

i

2

Problem 3: Notice that the logic below consists of three repeated parts. Write a Verilog explicit
structural description of the logic which consists of two modules, one module, name it part, will
be for the part that’s repeated, the other, name it whole, will instantiate part three times and
interconnect them appropriately. Choose appropriate inputs and outputs for the two modules based
on the diagram.

c

a[0] b[0]

x[0]

a[1] b[1]

x[1]

a[2] b[2]

x[2]
y

Solution appears below.

// SOLUTION

module part(x,y,a,b,c);

input a, b, c;

output x, y;

wire nb;

not n1(nb,b);

and a1(x,a,nb);

or o1(y,x,c);

endmodule;

module whole(x,y,a,b,c);

input [2:0] a, b;

input c;

output [2:0] x;

output y;

wire y0, y1;

part p0(x[0], y0, a[0], b[0], c);

part p1(x[1], y1, a[1], b[1], y0);

part p2(x[2], y, a[2], b[2], y1);

endmodule;

Problem 4: Replace each assign statement below with explicit structural code. Consider each
assign statement in isolation (they are not part of the same module). There is no need to show the
module declarations.

Solution appears below. There are several approaches to solving this. Perhaps the easiest is to first draw a truth
table based on the assign and then determine the logic gates from the truth table. Another approach is to realize that
the expression I ? J : K is equivalent to the logic I · J + I ·K. For the first assign we get (a · b) · 1 + a · b · 0
which simplifies to a · b, just an AND gate.

3

A common mistake is using an AND gate to test equality. It’s an XNOR (not exclusive or) that tests equality. That

is, a == b is equivalent to the Boolean expression a⊕ b (an XNOR operation). So for the second assign we have
(

a⊕ b
)

· 0 +
(

a⊕ b
)

· 1 which simplifies to a⊕ b, a single XOR gate.

assign x = a & b ? 1 : 0;

// SOLUTION

and a1(x,a,b);

assign x = a == b ? 0 : 1;

// SOLUTION

xor x1(x,a,b);

assign x = a ? b : c;

// SOLUTION

wire t1, t2, na;

or o1(x,t1,t2);

and a1(t1,a,b);

not n1(na,a);

and a2(t2,na,c);

4

