
Name Solution

Computer Organization

EE 3755

Midterm Examination

Wednesday, 24 October 2012, 9:30–10:20 CDT

Alias A Century of Turing

Problem 1 (15 pts)

Problem 2 (14 pts)

Problem 3 (14 pts)

Problem 4 (14 pts)

Problem 5 (18 pts)

Problem 6 (11 pts)

Problem 7 (14 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee3755/

Problem 1: [15 pts] Consider the module below:

module module1(x,y,a,b,c);

input a, b, c; output x, y;

wire t1, an;

not n1(an, a);

and a1(t1, an, b);

or o1(x, t1, c);

and a2(y, t1, c);

endmodule

(a) Draw a logic diagram corresponding to the module. Don’t optimize.

�Logic diagram of module1.

Solution appears below.

x

y

t1

ana

b

c

(b) Complete the module below so that it performs the same operation as module1 but is in implicit structural
form.

� Implicit structural form of module1.

module module1(x,y,a,b,c);

input a, b, c; output x, y;

// SOLUTION

assign x = !a && b || c;

assign y = !a && b && c;

endmodule

2

Problem 2: [14 pts] Appearing below is a Verilog description of a two-level adder used in Homework 2.

module adder_r4_c3(sum,a,b);

input [11:0] a, b; output [12:0] sum;

wire [2:0] P, G, carry, CO;

ripple_4_block ad0(sum[3:0], CO[0], a[3:0], b[3:0], carry[0]);

ripple_4_block ad1(sum[7:4], CO[1], a[7:4], b[7:4], carry[1]);

ripple_4_block ad2(sum[11:8], CO[2], a[11:8], b[11:8], carry[2]);

gen_prop_4 gp0(G[0], P[0], a[3:0], b[3:0]);

gen_prop_4 gp1(G[1], P[1], a[7:4], b[7:4]);

gen_prop_4 gp2(G[2], P[2], a[11:8], b[11:8]);

assign carry[0] = 1’b0;

assign carry[1] = G[0];

assign carry[2] = G[0] & P[1] | G[1];

assign sum[12] = G[0] & P[1] & P[2] | G[1] & P[2] | G[2];

endmodule

(a) Suppose that the input to the adder were a=0x123 and b=0xabc. Show the values on the wires indicated
below: Hint: If you don’t remember the formulas for P and G, try to remember what they are supposed to do.

�Wire a[3:0] Solution: = 316 = 00112

�Wire b[7:4] Solution: = b16 = 10112

�Wire P[2], P[1], and P[0] Solution: P[2]=0, P[1]=0, and P[0]=1 .

�Wire G[2], G[1], and G[0] Solution: G[2]=0, G[1]=0, and G[0]=0 .

For the first two parts above, pay attention to the bit positions.

The upper-case P propagate signal is 1 if a carry-in to a block, such as ripple 4 block ad1, will propagate all the way though
the block and emerge as a carry out. That will happen if all the lower-case p propagate signals are 1. Recall that
p[i] = a[i] or b[i]. Therefore P[0]=1 and the others are zero.

The generate signal is 1 if a block will have a carry out whether or not there is a carry in. The easy way to determine that for a
block is to add their inputs and see if the result is strictly greater than 15. For example, for the block ad0 the inputs are a = 316

and b = c16. Their sum is 316 + c16 = f16, and so their is no overflow. Neither is their overflow for blocks ad1 and ad2, and so
all of the generate bits are zero.

To see an example where a generate bit is 1, consider inputs a = 57216 and b = abc16 then the propagate bits would be 1102

and the generate bits would be 0102.

3

Problem 3: [14 pts] Appearing below is Verilog code for a carry lookahead adder which computes the
carry signals two ways. First is the conventional Old way, the second computes the same values for the carry
signals but the Verilog expression is much shorter. (Code for computing carry0 to carry3 is not shown.)
An actual module would use one of these ways, not both.

// Old Way

assign carry4 = g0 & p1 & p2 & p3 | g1 & p2 & p3 | g2 & p3 | g3;

assign carry5 = g0 & p1 & p2 & p3 & p4 | g1 & p2 & p3 & p4

| g2 & p3 & p4 | g3 & p4 | g4;

// "New" Way:

assign carry4 = carry3 & p3 | g3;

assign carry5 = carry4 & p4 | g4;

(a) Compute the amount of time it will take to compute carry5 using the Old and “New” ways. The p and
g signals are available at t = 0. All gates have a delay of one time unit, regardless of the number of inputs.
Don’t forget to account for carry0, carry1, . . ., carry3 when necessary, they are not available at t = 0.
Show work or explain your answers.

�Time for carry5 using Old way: Solution: 2 time units.

In the old way there is a five-input OR gate fed by four AND gates of various sizes. The inputs to these gates are all p and g signals,
which are available at t = 0. The longest path a signal has to take is through two gates and so the carry5 signal will be available
after 2 time units.

�Time for carry5 using “New” way:

Once carry4 is available, carry5 can be computed in two time units, one for the AND gate and one for the OR gate. The
carry4 signal is available 2 units after carry3, and so on down to carry1. The carry0 signal would be the carry-in input to
the circuit so its reasonable to assume that it’s available at t = 0. Therefore, using a two-time-unit delay each for carry1 through
carry5, the carry5 signal will not be available until 10 time units.

(b) There is an advantage to “New” way (and it’s not performance). However, “New” way is not the best
name.

�Explain the advantage of “New” way.

In the “New” way each carry signal is computed using only two gates, fewer than the number of gates needed for the Old way.

Therefore the advantage is lower cost .

Grading Note: Many only answered that the advantage is the Verilog is shorter and more readable. That’s true, however there is
also a significant difference in the underlying logic, and that had to be mentioned for full credit.

�Calling it the “New” way of building a carry lookahead adder is misleading because...

A carry lookahead adder is supposed to compute the carry signals quickly by looking ahead at all of the inputs at once, rather than
waiting for a carry signal to arrive after passing, or rippling, through the logic for the less significant bits, as happens in a ripple
adder.

Because in the “New” way carry i must wait for carry i−1 it operates just like a ripple adder, sharing the performance disadvantage
(because the carry signals take longer to arrive) and the cost advantage. Therefore, rather than being a new kind of carry lookahead
adder, the “New” way is just a minor variation on the ripple adder.

4

Problem 4: [14 pts] Appearing below is the streamlined multiplier used in Verilog note set 7. Suppose that
the multiplier is used with multiplicand=0x8a and multiplier=0x85. In the table below show the values
in registers bit and product when execution reaches the indicated places in the code. The table is already
filled in for the INIT block row, complete the four PP rows. Note that it takes 16 iterations to compute the
product, so don’t expect product to be 8a16 × 8516 = 47b216 in the fourth PP row.

module streamlined_mult(product,ready,multiplicand,multiplier,start,clk);

input [15:0] multiplicand, multiplier;

input start, clk;

output product, ready;

reg [31:0] product; reg [4:0] bit;

wire ready = !bit;

initial bit = 0;

always @(posedge clk)

if (ready && start) begin:INIT // <- THE INIT BLOCK

bit = 16;

product = { 16’d0, multiplier };

// VALUES SHOWN WHEN EXECUTION REACHES HERE, IN THE INIT BLOCK

end else if (bit) begin:PP // <- THE PP BLOCK

reg lsb;

lsb = product[0];

product = product >> 1;

bit = bit - 1;

if (lsb) product[31:15] = product[30:15] + multiplicand;

// SHOW VALUES WHEN EXECUTION REACHES HERE, IN THE PP BLOCK

end

endmodule

� Show values for bit and product in the four PP rows table below.

location bit product

-------- ------ ---------------

INIT 16 0x 0000 0085

SOLUTION

PP 15 0x 0045 0042

PP 14 0x 0022 8021

PP 13 0x 0056 4010

PP 12 0x 002b 2008

5

Problem 5: [18 pts] Answer the computer arithmetic questions below.

(a) Show the longhand steps needed to multiply 6c16×3916 using a radix-4 (two bit) multiplication algorithm,
but do not add together the partial products. Show the work in binary or hexadecimal. This is without

Booth recoding. (The product is 180c16, but remember there is no need to add the partial products.)

�Longhand steps for radix-4 (2 bit) 6c16 × 3916:

SOLUTION:

0110 1100 = 0x6c

* 0011 1001 = 0x39

0110 1100 = 1 * 1 * 0x6c

011 0110 0000 = 4 * 2 * 0x6c

1 0100 0100 0000 = 16 * 3 * 0x6c

1 1000 0000 1100 = 0x180c <- Not required for full credit.

(b) Show the value of IEEE 754 single-precision floating point number 0x41810000. For your convenience
the layout of an IEEE 754 single is shown below. Note: In the original version of this exam, the encoded

number was 0x4181000, which was much smaller than intended.

IEEE Single:

S

31

E

30 23

F

22 0

�Value of number (in decimal or as a formula to compute value) is:

Two solutions are shown, first the one to the number intended, the second to the one given on the original exam.

First, split 0x41810000 into sign, exponent, significand: 0x41810000 −→ 0 10000011 00000010000000000000000.
The biased exponent is 1000 00112 = 131. Subtracting the bias for an IEEE single number, 127, gives an exponent of 131−127 =
4. The fraction is obtained by prepending a 1. to the significand, yielding 1.00000012 (with the trailing 0’s omitted). The value
is 1.00000012 × 24 = (1 + 2−7) × 24 = 16.12510. The same value can be obtained by treating the significand as an integer:
(

1 + 000000100000000000000002

223

)

24.

The original question asked for a conversion of 0x4181000. Those who mis-read it as 0x41810000 were graded based on the
answer above. Here is the solution for 0x4181000.

0x4181000 −→ 0 00001000 00110000001000000000000. The biased exponent is 10002 = 8, subtracting the bias
yields the exponent 8−127 = −119. The fraction is 1.001100000012 ≈ 1.1879910 or 1+ 1100000010000000000002

223 . Applying
the exponent yields the value 1.001100000012 × 2−119

≈ 1.78749 × 10−36.

6

Problem 6: [11 pts] Show the values in register $s0 after the execution of each instruction below in the
spaces indicated.

�Fill in the s0 = blanks below.

Initial register values: $s1 = 10, $s2 = 20

add $s0, $s1, $s2

$s0 = SOLUTION: 30

and $s0, $s1, $s2

$s0 = SOLUTION: 0

sll $s0, $s1, 2

$s0 = SOLUTION: 40 = 101000 = 0x28

slt $s0, $s1, $s2

$s0 = SOLUTION: 1

addi $s0, $s1, 30

$s0 = SOLUTION: 40

lui $s0, 0x4321

$s0 = SOLUTION: 0x 4321 0000

7

Problem 7: [14 pts] Answer each MIPS encoding question below.

(a) Show the encoding of each assembly language instruction below. Some field values would have to be
looked up in a table, for those write “look up” instead of the value. For your convenience the layout of the
MIPS R and I formats are shown, answers can be written in these or they can be copied.

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

Format I:

opcode

31 26

rs

25 21

rt

20 16

imm

15 0

�Encoding for add $5, $6, $7

The encoding is:

opcode

0

31 26

rs

6

25 21

rt

7

20 16

rd

5

15 11

sa

0

10 6

func

look up

5 0

We assume that the opcode is zero because it is a type-R instruction. The sa field (shift amount) is zero because the field is unused
by the instruction and the MIPS ISA definition usually sets unused fields to zero (preserving them for future use). The func field is
essentially a continuation of the opcode field for format R, and there is no way of knowing the value for add short of memorization,
so the correct answer is look up. For the record, the actual value is 0x20.

�Encoding for addi $8, $9, -1

The encoding is:

opcode

look up

31 26

rs

9

25 21

rt

8

20 16

imm

-1

15 0

Note that the destination (r8) is specified in the rt field and the source (r9) is specified in the rs field. The opcode, which was
not required for full credit, is 0x08.

�Encoding for sll $10, $11, 12

The encoding is:

opcode

0

31 26

rs

0

25 21

rt

11

20 16

rd

10

15 11

sa

12

10 6

func

look up

5 0

The sll instruction uses format R and is one of the few instructions to use the sa field. Note that the register source operand (r11)
is the rt field. Full credit was given for a func field value of look up, though some might have remembered that sll 0,0, 0 is
the “official” expansion of the nop pseudo instruction because it’s encoding is all zeros, including the func field.

8

(b) Shown below is instruction format XI, a format for XIPS, an instruction set similar to MIPS, but with
significant differences. Describe two differences of XIPS from MIPS in terms directly relevant to an assembly
language programmer. That is, don’t just answer that the rs and rt fields are two bits larger than in MIPS.

Format XI:

opcode

31 26

rs

25 19

rt

18 12

imm

11 0

�Difference of XIPS relevant to a assembly language programmer:

In both XIPS and MIPS an instruction is 32 bits, but in XIPS the imm field is four bits shorter and the register fields are each two
bits longer.

For an assembly language programmer this means that code using constants of size 13 to 16 bits can use immediate instructions on
MIPS (such as andi r1, r2, 0xfecb) but on XIPS such code would have to use multiple instructions, perhaps two or three to
place the constant in a register followed by the operation. See the example below. This difference is clearly a disadvantage of XIPS.

MIPS Code

andi r1, r2, 0xfecb

Equivalent XIPS Code, without ‘‘new’’ instructions.

ori r3, r0, 0xfec

sll r3, r3, 4

ori r3, r3, 0xb

andi r1, r2, r3

Equivalent XIPS Code, with a reasonable new instruction: lmi.

lmi r3, 0xf # Load Middle Immediate. Loads bits 23:12

ori r3, r3, 0xecb

andi r1, r2, r3

An advantage of XIPS for an assembly language programmer is that there are presumably four times as many registers (since the
register fields are two bits larger). That’s an advantage for code generating many intermediate values. Suppose some piece of code
required 100 intermediate values. On XIPS all could be placed in registers. On MIPS one would have to use store (such as sw) and
load (such as lw) instructions to spill and fill these values in and out of memory, adding to code size and execution time. See the
example below.

XIPS Code

add r100, r101, r102

Equivalent MIPS Code

sw r10, 400(r29) # Save value of r10 in stack to make room for ...

lw r10, 440(r29) # ... value needed by the add instruction.

sw r15, 200(r29) # Save r15 on the stack to make room for add’s result.

add r15, r8, r10

9

