
Name

Computer Organization

EE 3755

Midterm Examination

Wednesday, 24 October 2012, 9:30–10:20 CDT

Alias

Problem 1 (15 pts)

Problem 2 (14 pts)

Problem 3 (14 pts)

Problem 4 (14 pts)

Problem 5 (18 pts)

Problem 6 (11 pts)

Problem 7 (14 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee3755/

Problem 1: [15 pts] Consider the module below:

module module1(x,y,a,b,c);

input a, b, c; output x, y;

wire t1, an;

not n1(an, a);

and a1(t1, an, b);

or o1(x, t1, c);

and a2(y, t1, c);

endmodule

(a) Draw a logic diagram corresponding to the module. Don’t optimize.

Logic diagram of module1.

(b) Complete the module below so that it performs the same operation as module1 but is in implicit structural
form.

Implicit structural form of module1.

module module1(x,y,a,b,c);

input a, b, c; output x, y;

endmodule

2

Problem 2: [14 pts] Appearing below is a Verilog description of a two-level adder used in Homework 2.

module adder_r4_c3(sum,a,b);

input [11:0] a, b; output [12:0] sum;

wire [2:0] P, G, carry, CO;

ripple_4_block ad0(sum[3:0], CO[0], a[3:0], b[3:0], carry[0]);

ripple_4_block ad1(sum[7:4], CO[1], a[7:4], b[7:4], carry[1]);

ripple_4_block ad2(sum[11:8], CO[2], a[11:8], b[11:8], carry[2]);

gen_prop_4 gp0(G[0], P[0], a[3:0], b[3:0]);

gen_prop_4 gp1(G[1], P[1], a[7:4], b[7:4]);

gen_prop_4 gp2(G[2], P[2], a[11:8], b[11:8]);

assign carry[0] = 1’b0;

assign carry[1] = G[0];

assign carry[2] = G[0] & P[1] | G[1];

assign sum[12] = G[0] & P[1] & P[2] | G[1] & P[2] | G[2];

endmodule

(a) Suppose that the input to the adder were a=0x123 and b=0xabc. Show the values on the wires indicated
below: Hint: If you don’t remember the formulas for P and G, try to remember what they are supposed to do.

Wire a[3:0]

Wire b[7:4]

Wire P[2], P[1], and P[0]

Wire G[2], G[1], and G[0]

3

Problem 3: [14 pts] Appearing below is Verilog code for a carry lookahead adder which computes the
carry signals two ways. First is the conventional Old way, the second computes the same values for the carry
signals but the Verilog expression is much shorter. (Code for computing carry0 to carry3 is not shown.)
An actual module would use one of these ways, not both.

// Old Way

assign carry4 = g0 & p1 & p2 & p3 | g1 & p2 & p3 | g2 & p3 | g3;

assign carry5 = g0 & p1 & p2 & p3 & p4 | g1 & p2 & p3 & p4

| g2 & p3 & p4 | g3 & p4 | g4;

// "New" Way:

assign carry4 = carry3 & p3 | g3;

assign carry5 = carry4 & p4 | g4;

(a) Compute the amount of time it will take to compute carry5 using the Old and “New” ways. The p and
g signals are available at t = 0. All gates have a delay of one time unit, regardless of the number of inputs.
Don’t forget to account for carry0, carry1, . . ., carry3 when necessary, they are not available at t = 0.
Show work or explain your answers.

Time for carry5 using Old way:

Time for carry5 using “New” way:

(b) There is an advantage to “New” way (and it’s not performance). However, “New” way is not the best
name.

Explain the advantage of “New” way.

Calling it the “New” way of building a carry lookahead adder is misleading because...

4

Problem 4: [14 pts] Appearing below is the streamlined multiplier used in Verilog note set 7. Suppose that
the multiplier is used with multiplicand=0x8a and multiplier=0x85. In the table below show the values
in registers bit and product when execution reaches the indicated places in the code. The table is already
filled in for the INIT block row, complete the four PP rows. Note that it takes 16 iterations to compute the
product, so don’t expect product to be 8a16 × 8516 = 47b216 in the fourth PP row.

module streamlined_mult(product,ready,multiplicand,multiplier,start,clk);

input [15:0] multiplicand, multiplier;

input start, clk;

output product, ready;

reg [31:0] product; reg [4:0] bit;

wire ready = !bit;

initial bit = 0;

always @(posedge clk)

if (ready && start) begin:INIT // <- THE INIT BLOCK

bit = 16;

product = { 16’d0, multiplier };

// VALUES SHOWN WHEN EXECUTION REACHES HERE, IN THE INIT BLOCK

end else if (bit) begin:PP // <- THE PP BLOCK

reg lsb;

lsb = product[0];

product = product >> 1;

bit = bit - 1;

if (lsb) product[31:15] = product[30:15] + multiplicand;

// SHOW VALUES WHEN EXECUTION REACHES HERE, IN THE PP BLOCK

end

endmodule

Show values for bit and product in the four PP rows table below.

location bit product

-------- ------ ---------------

INIT 16 0x 0000 0085

PP 15

PP

PP

PP

5

Problem 5: [18 pts] Answer the computer arithmetic questions below.

(a) Show the longhand steps needed to multiply 6c16×3916 using a radix-4 (two bit) multiplication algorithm,
but do not add together the partial products. Show the work in binary or hexadecimal. This is without

Booth recoding. (The product is 180c16, but remember there is no need to add the partial products.)

Longhand steps for radix-4 (2 bit) 6c16 × 3916:

(b) Show the value of IEEE 754 single-precision floating point number 0x41810000. For your convenience
the layout of an IEEE 754 single is shown below. Note: In the original version of this exam, the encoded

number was 0x4181000, which was much smaller than intended.

IEEE Single:

S

31

E

30 23

F

22 0

Value of number (in decimal or as a formula to compute value) is:

6

Problem 6: [11 pts] Show the values in register $s0 after the execution of each instruction below in the
spaces indicated.

Fill in the s0 = blanks below.

Initial register values: $s1 = 10, $s2 = 20

add $s0, $s1, $s2

$s0 =

and $s0, $s1, $s2

$s0 =

sll $s0, $s1, 2

$s0 =

slt $s0, $s1, $s2

$s0 =

addi $s0, $s1, 30

$s0 =

lui $s0, 0x4321

$s0 = ;

7

Problem 7: [14 pts] Answer each MIPS encoding question below.

(a) Show the encoding of each assembly language instruction below. Some field values would have to be
looked up in a table, for those write “look up” instead of the value. For your convenience the layout of the
MIPS R and I formats are shown, answers can be written in these or they can be copied.

Format R:

opcode

31 26

rs

25 21

rt

20 16

rd

15 11

sa

10 6

func

5 0

Format I:

opcode

31 26

rs

25 21

rt

20 16

imm

15 0

Encoding for add $5, $6, $7

Encoding for addi $8, $9, -1

Encoding for sll $10, $11, 12

(b) Shown below is instruction format XI, a format for XIPS, an instruction set similar to MIPS, but with
significant differences. Describe two differences of XIPS from MIPS in terms directly relevant to an assembly
language programmer. That is, don’t just answer that the rs and rt fields are two bits larger than in MIPS.

Format XI:

opcode

31 26

rs

25 19

rt

18 12

imm

11 0

Difference of XIPS relevant to a assembly language programmer:

8

