
LSU EE 3755 Homework 6 Solution Due: 26 November 2012

This assignment is to be completed on the ECE Linux workstations, please follow the instruc-

tions at http://www.ece.lsu.edu/ee3755/proc.html.

The Verilog code showing the solution is available at http://www.ece.lsu.edu/ee3755/2012f/hw06-sol.v
The unmodified code is at http://www.ece.lsu.edu/ee3755/2012f/hw06.v

Problem 0: Follow the instructions for MIPS Homework Workflow in the procedures page,
http://www.ece.lsu.edu/ee3755/proc.html, but substitute hw06 for the directory and hw06.v

for the name of the file to copy. (The extension is .v (Verilog), not .s (assembler).)
Load the file into an Emacs buffer. If things are set up correctly the buffer should show most

comments in red (though titles will be a larger black font) and Verilog code should by syntax-
highlighted, for example showing input and output in light blue and reg in purple. There should
also be a Verilog pull-down menu.

Run the Verilog simulation without modification by pressing F9 or by selecting Verilog Compile.
(Don’t select synthesize and compile, it does not work yet.) The window should be split into two
panes, with the lower pane starting with something like:

-*- mode: compilation; default-directory: "~/teach/co12f/s/" -*-

Compilation started at Mon Nov 19 08:05:19

irun -batch -exit hw06.v

irun(64): 10.20-s120: (c) Copyright 1995-2012 Cadence Design Systems, Inc.

file: hw06.v

module worklib.cpu:v

errors: 0, warnings: 0

and ending with something like

PC 0x00400010: 10: li $a1, 10

Register $5 (a1): 0x00000032 (50) -> 0x0000000a (10)

PC 0x00400014: 12: addi $t6, $0, -2

Register $14 (t6): 0x0000008c (140) -> 0xfffffffe (-2)

PC 0x00400018: 13: addi $t5, $0, 2

Register $13 (t5): 0x00000082 (130) -> 0x00000002 (2)

PC 0x0040001c: 15: bgez $t5, SKIP1

*** Illegal instruction exception at address 0x0040001c ***

Executed 8 instructions, average time 2.88 CPI.

End of testbench run.

The text “Illegal instruction exception” indicates that the simulated MIPS processor, in hw06.v,
did not recognize an instruction. That will be fixed in Problem 2.

Problem 1: Change implementation of lui so that it uses the shift unit in the ALU rather than
using a shifted version of the immediate, limmed. There is no way to tell if this is solved correctly
just by looking at simulator output. But, if the modified implementation does not execute lui

correctly there will be an error message. For example,

1

http://www.ece.lsu.edu/ee3755/
http://www.ece.lsu.edu/ee3755/proc.html
http://www.ece.lsu.edu/ee3755/2012f/hw06-sol.v
http://www.ece.lsu.edu/ee3755/2012f/hw06.v
http://www.ece.lsu.edu/ee3755/proc.html

PC 0x00400000: 6: lui $t1, 0x1234;

Register $9 (t1): 0x0000005a (90) -> 0x00000000 (0)

*** FAIL: Wrong value written. 0x12340000 (correct) != 0x00000000 ***

Hint: Look at the way the sll instruction is implemented.

Use the ALU in a manner similar to type I instructions such as addi. For the operation choose OP_sll, for the
alu_a input (the shift amount) use the constant 16, alu_b is set to uimmed and the destination is rt. With this
change one input to the alu_b multiplexor has been eliminated, the one for limmed (which is no longer being used),
but one input to the alu_b mux has been added. If both mux inputs cost as much as a typical 32-bit mux input then
there is only a small benefit. However, with the right logic design (or good synthesis optimization) the input to alu_a
can be shrunk to 5 bits (since OP_sll only examines 5 bits). Another design alternative is to use a fixed OP_sll16

operation in the ALU, eliminating the need even for an extra input to alu_a (with OP_sll16 the value of alu_a
would be ignored).

Here is the relevant change:

O_lui: bndl = {rt, rs_val, OP_or, limmed }; // Before change.

O_lui: bndl = {rt, 32’d16, OP_sll, uimmed }; // After change.

Problem 2: The illegal instruction exception encountered above is due to the bgez instruction
not being implemented by the MIPS module. Implement bgez and bltz, the simulation should run
to completion (without showing an illegal instruction exception or other error messages) finishing
with a “PASS” message.

For detailed descriptions of these instructions see
http://www.ece.lsu.edu/ee4720/mips32v2.pdf.

Whether these branches are taken depends on the value of the rs register. Instruction bgez is taken if the value
is not negative and bltz is taken if the value is negative. To check if a value is negative one only needs to look at the
most significant bit. In the solution this test is done in the ID state. If the branch is not taken the next state is ST if

and if the branch is taken it is ST ex targ. Notice that the ALU is not needed to test the branch condition, for this
reason the ID state can set the ALU to compute the branch condition:

O_br: bndl = {R0, npc, OP_add, simmed << 2 }; // SOLUTION

The code for testing the branch condition and setting the next state is here:

case (opcode)

O_lbu, O_sb : state = ST_ex_addr;

O_bne, O_beq : state = ST_ex_cond;

/// SOLUTION BELOW

O_br:

// Use the rt field to determine the exact branch

// condition.

case (rt)

B_bgez: state = rs_val[31] ? ST_if : ST_ex_targ;

B_bltz: state = rs_val[31] ? ST_ex_targ : ST_if;

endcase

/// SOLUTION ABOVE

O_j : state = ST_if;

default : state = ST_ex;

endcase

end

2

http://www.ece.lsu.edu/ee4720/mips32v2.pdf

