
LSU EE 3755 Homework 5 Solution Due: 20 November 2012

For this assignment read Chapter 4 of Patterson & Hennessy, Computer Organization 4th

Edition, up to and including Section 4.4. These sections describe a MIPS implementation which is

most similar to our functional simulation model,

http://www.ece.lsu.edu/ee3755/2012f/mips_fs.v.html, however for this assignment compare

the Section 4.1-4.4 implementation to our Multi-cycle Implementation 1,

http://www.ece.lsu.edu/ee3755/2012f/mips_hc.v.html.

Problem 1: Consider how the instructions beq and bne are implemented in the two designs.

(a) How does the implementation described in Section 4.3 detect whether the beq and bne instruc-
tions are taken?

The ALU in the Section 4.3 implementation has the usual result output but also a 1-bit output, Zero, which
indicates whether the result is equal to zero. To execute beq and bne instructions the ALU is set to perform a subtract
operation, control logic examines the Zero output and considers the branch to be taken if Zero is 1 for beq or 0 for
bne.

(b) How is that different than the method used by the Multicycle MIPS Implementation 1 presented
in class?

The implementation described in class also uses the ALU, however our ALU lacks a Zero output. Instead, there is
a set-equal ALU operation which sets the output to 1 if the two inputs are equal.

Problem 2: The Section 4.4 implementation illustrated in Figure 4.15 has a RegWrite signal.

(a) What does that signal do?
It commands the register file to write the data at input Write data in to the register number at input Write

register.

(b) The multi-cycle implementation covered in class lacks such a signal. Explain how it gets by
without it.

The class implementation does a write every cycle so it doesn’t need a Write data signal. To avoid disturbing
things when a register write is not needed (for example, when executing a branch or store instruction), the register number
is set to zero. The Verilog code for our implementation does not write the register file if register zero is given as the
destination register. (That’s another way of saying that our register file is designed so that writes to register number zero
have no effect.)

Problem 3: The implementation described in Section 4.4 is a single-cycle implementation and is
most similar to our functional simulation model. The multi-cycle implementation that we are now
(16 November 2012) covering has cost and performance advantages.

(Don’t forget: The pipelined implementation, which will be covered in EE 4720, has even
greater performance benefits. The multi-cycle implementation is both a pedagogical bridge to
the pipelined implementation, but it also is a suitable implementation technique for instruction
sets more complex [and not in a good way] than MIPS. Many mid 20th century computers used
multi-cycle implementations, by the 80s pipelined implementations replaced them.)

(a) Consider the cost of the implementation illustrated in Figure 4.17 as compared to our multi-
cycle implementation. Indicate the major units of hardware illustrated in 4.17 that are not needed
in the multi-cycle implementation. (Those 4.17 units are not needed because a single unit in the
multi-cycle implementation is used for different purposes over different clock cycles.)

The implementation illustrated in Figure 4.17 has two major units that the multi-cycle implementation lacks: an
adder and a memory port.

1

http://www.ece.lsu.edu/ee3755/
http://www.ece.lsu.edu/ee3755/2012f/mips_fs.v.html
http://www.ece.lsu.edu/ee3755/2012f/mips_hc.v.html


The not-needed adder appears in the upper-right of the diagram, and is labeled as an ALU (even though it only
performs addition). It is used to compute branch targets. The multi-cycle implementation uses the same ALU for both
branch target computation and to perform instructions’ arithmetic and logical operations.

The not-needed memory port appears in the lower-right side of the diagram, labeled Data memory. This memory
port is used for load and store instructions (a second data port (on the lower left-hand side) is used for instructions). The
class multi-cycle implementation uses the same data port both for fetching instructions and for loads and stores.

Note that the terms Data memory and Instruction memory used in the text can be considered misleading
because in MIPS the same address space (set of addresses, or oversimplifying, set of memory locations) is used for both
instructions and data. In real CPU implementations there are usually separate memory ports for instructions and data.
Both ports can reach the same set of memory locations, those locations are reached by passing through multiple cache

layers and crossing one or more busses and maybe networks. Memory ports are expensive however the cost is justified in
real CPUs because one can fetch an instruction and perform a load or store operation simultaneously.

2


