
LSU EE 3755 Homework 3 Solution Due: 15 October 2012

Problem 1: The module below performs subtraction näıvely, using two adders. If the synthesis
program does not see it, the resulting hardware will use the two adders. Re-write the module so
that it uses one adder, even before the synthesis program applies optimization.

module subtract(diff, a, b);

input a, b;

output diff;

wire [31:0] a, b, diff;

wire [31:0] bnot = ~ b; // Perform bitwise-negation.

wire cout1, cout2; // Ignore values.

wire [31:0] bneg;

// Ripple_add_32 ports: carry-out, sum, addend, addend, carry-in.

ripple_add_32 a1(cout1, bneg, bnot, 32’d1, 1’b0);

ripple_add_32 a2(cout2, diff, a, bneg, 1’b0);

endmodule

The solution appears below. In the module above the first ripple adder, a1, is used only to add one to bnot, part
of the process of computing the two’s complement representation of -b. In the solution below the carry-in input of what
was the second adder is used to add that one, thus eliminating an adder.

// SOLUTION

module subtract(diff, a, b);

input a, b;

output diff;

wire [31:0] a, b, diff;

wire [31:0] bnot = ~ b; // Perform bitwise-negation.

wire cout; // Ignore value.

ripple_add_32 a2(cout, diff, a, bnot, 1’b1);

endmodule

Problem 2: Memorize the Boolean expressions to compute the generate and propagate signals
in a carry lookahead adder. Show a Boolean expression needed to generate carry in 5 of a flat
carry lookahead adder, where carry in 0 is the carry in to the least significant bit. In your Boolean
expression use pi for the propagate signal from bit i, for i ≥ 0 and use gi for the generate signal
from bit i, for i ≥ 0.

Solution:
c5 = g4 + g3p4 + g2p3p4 + g1p2p3p4 + g0p1p2p3p4,

where + is logical or and juxtaposition is logical and.

1

http://www.ece.lsu.edu/ee3755/


Problem3: Show the work for long-hand multiplication of 6b16×2716 using radix-16 multiplication
(four bits at a time). See the examples in lecture set 7,
http://www.ece.lsu.edu/ee3755/2012f/l07.v.html.

Solution appears below. The work is shown in binary (to the left) even though with radix 16 it would be easier to
do the work in hexadecimal.

0110 1011 = 0x6b = 107

* 0010 0111 = 0x27 = 39

---------------------

0010 1110 1101 = 0x6b * 0x7 = 0x2ed = 749 * 1 = 749

+ 0000 1101 0110 = 0x6b * 0x2 = 0xd6 = 214 * 16 = 3424

---------------------

1 0000 0100 1101 = 0x104d = = 4173

2

http://www.ece.lsu.edu/ee3755/2012f/l07.v.html


Problem 4: Show the work for long-hand multiplication of 6b16×2716 using radix-4 Booth recod-
ing. Remember that with Booth recoding some of the partial products can be negative, so remember
to sign extend as long as necessary. Please make an effort to arrive at the correct answer, which is
104d16.

Solution appears below. For this discussion see the “Radix-4 Booth Table” from Note Set 7, at
http://www.ece.lsu.edu/ee3755/2012f/l07.v.html.

The first step is to prepare the multiples of the multiplicand needed by the radix-4 Booth algorithm, that appears
first below, followed by the multiplication. Being a radix-4 algorithm the multiplier is examined two bits at a time, (since
log

2
4 = 2), starting at the least significant bits. Multiplier bits are labeled MB in the Radix-4 Booth Table and in the

work below. For the first partial product (labeled with an a: on the left) the multiplier bits are MB = 11, and since
it’s the first partial product the carry in bit is zero, that is, C = 0. Based on the Booth table the partial product should
be -1 times the multiplicand and there should be a carry out. (There is a carry out whenever the MSB of MB is 1.) The
value of -1 times the multiplicand is found in the multiples table, notice that the sign bit is extended as far to the left as
needed. For the second partial product the next two multiplier bits are used, 01; the carry in is the carry out from the
previous step, 1. According to the Booth table we use two times multiplicand, this multiple needs to be shifted by two
bits more (since it’s the second partial product). Similar reasoning provides the partial product lines c: and d:. The
sum of the partial products is on line s:, the partial product sum’s carry out, shown as an X, is ignored. (The carries
shown in the Booth table have nothing to do with the carries obtained when adding the partial products.)

The calculation is performed below for 20 bits, but only 16 bits are necessary to represent the product of two 8-bit
numbers.

Multiples of the multiplicand, used in partial products.

1 * 0x6b = 0000 0000 0110 1011

-1 * 0x6b = 1111 1111 1001 0101 Negative, extend sign as necessary.

2 * 0x6b = 0000 0000 1101 0110

-2 * 0x6b = 1111 1111 0010 1010 Negative, extend sign as necessary.

Perform the Multiplication:

0110 1011 = multiplicand = 0x6b = 107

* 0010 0111 = multiplier = 0x27 = 39

------------------------

a: 1111 1111 1111 1001 0101 MB = 11, C = 0 => x = -1, c = 1

b: 0000 0000 0011 0101 10 MB = 01, C = 1 => x = 2, c = 0

c: 1111 1111 0010 1010 MB = 10, C = 0 => x = -2, c = 1

d: 0000 0001 1010 11 MB = 00, C = 1 => x = 1, c = 0

--------------------------

s: X 0000 0001 0000 0100 1101 = 0x4d01

3

http://www.ece.lsu.edu/ee3755/2012f/l07.v.html

