
Name

Computer Organization

EE 3755

Final Examination

Tuesday, 4 December 2012, 7:30–9:30 CST

Alias

Problem 1 (15 pts)

Problem 2 (15 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (5 pts)

Problem 6 (5 pts)

Problem 7 (20 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/ee3755/

Note: The hardwired-control MIPS implementation which is the subject of Problems 1 and 2 was not covered
in the Fall 2013 semester. To prepare for the 2013 (and future) final exams an alternative practice question
which is similar to the two following problems but uses the Very Simple MIPS covered in Fall 2013 and been
posted as Fall 2013 Homework 6. The two implementations (Very Simple and Hardwired Control) are very
similar. Very Simple is written in a Verilog style that makes it easier to what the synthesized hardware will
be and it is easier to distinguish between datapath and control logic. Another difference is that the Hardwired
Control MIPS uses more states for some instructions.

Problem 1: [15 pts] The MIPS implementation attached to this exam can execute a new instruction, xxx.
Lines relevant to the instruction have XXX on the right hand side.

(a) Describe instruction xxx as it might be described in an assembly language manual. Remember to describe
this as a MIPS instructions, don’t describe implementation details such as states or control signals.

Which instruction format is xxx?

Suggest a name and assembly language syntax for xxx.

Describe what xxx does.

(b) Show an example (one instruction is fine) of the use of xxx, then show how to do the same thing without
xxx.

Code example with xxx:

Code doing same thing but without xxx:

2

Problem 2: [15 pts] The following new instruction is to be implemented on the multi-cycle MIPS im-
plementation attached to the exam. The instruction, lsb RT, (RS), IMMED, loads the byte from memory
at the address in register RS and puts the byte in register RT, it also writes the memory location with
IMMED. For example, in the code below memory location 0x1000 initially holds a 7. After the execution
of the instruction the 7 is placed in the destination register, r1, and the memory location is written with 3
(the immediate).

Before: r2 = 0x1000 Mem[0x1000] = 7

lsb $r1, ($r2), 3

After: r1 = 7 Mem[0x1000] = 3

(a) Add this new instruction to the MIPS implementation attached to this exam.

• Note that the immediate is not used to compute the address.

• The memory port cannot simultaneously read and write.

• Try to minimize the number of new registers used.

Add the lsb instruction to attached implementation.

3

Problem 3: [20 pts] Answer each of the following MIPS programming questions.

(a) Show the shortest sequence of MIPS instructions needed to load the following constants or memory
locations into register t0. The solution for the first constant is given.

� Instruction(s) to load 0x7 into t0.

Example Solution

addi $t0, $0, 7

Instruction(s) to load 0xa30bf18a into t0.

Instruction(s) to load 0xa30b into t0.

Instruction(s) to load 0xa30b0000 into t0.

Instruction(s) to load word at memory address 0xa30b018c into t0.

4

(b) The code fragment below loads two items from memory, adds them together, then stores the sum. It
does so using more instructions than are necessary. Re-write the code so that it uses fewer instructions.

• A correct solution has only four instructions.

• Solution should take into account that MIPS byte order is big-endian.

lw $t0, 0($t1)

andi $t0, $t0, 0xffff

addi $t1, $t1, 6

lh $t2, 0($t1)

srl $t2, $t2, 8

andi $t2, $t2, 0xff

add $t3, $0, $0

add $t3, $t0, $t2

addi $t1, $t1, 2

sw $t3, 0($t1)

Registers $t1-$t3 no longer used at this point.

Re-written code using as few instructions as possible.

(c) Fill the delay slot in the MIPS code below by moving an instruction (without changing what the code
does, of course).

Fill delay slot.

addi $t4, $t4, 5

add $t1, $t1, $t4

beq $t0, $t1, SKIP

nop

add $t2, $t2, $t3

SKIP:

addi $t3, $t3, 1

addi $t4, $t4, 1

5

Problem 4: [20 pts] Consider the logic that would be synthesized for the_A_block in the multiplier

module below.

module multiplier(product,ready,multiplicand,multiplier,start,clk);

input [15:0] multiplicand, multiplier;

input start, clk;

output product, ready;

reg [31:0] product;

reg [4:0] bit;

wire ready = !bit;

wire [17:0] multiplicand_X_1 = {2’b0,multiplicand};

wire [17:0] multiplicand_X_2 = {1’b0,multiplicand,1’b0};

wire [17:0] multiplicand_X_3 = multiplicand_X_2 + multiplicand_X_1;

initial bit = 0;

always @(posedge clk)

if (ready && start) begin

bit = 8;

product = { 16’d0, multiplier };

end else if (bit) begin:the_A_block

reg [17:0] hs;

case (product[1:0])

2’d0: hs = {2’b0, product[31:16] };

2’d1: hs = {2’b0, product[31:16] } + multiplicand_X_1;

2’d2: hs = {2’b0, product[31:16] } + multiplicand_X_2;

2’d3: hs = {2’b0, product[31:16] } + multiplicand_X_3;

endcase

product = { hs, product[15:2] };

bit = bit - 1;

end

endmodule

6

Problem 4, continued:

(a) Sketch the logic that would be synthesized for the_A_block without optimization. Treat multipli-

cand_X_1, multiplicand_X_2, and multiplicand_X_3 as inputs to this logic.

Show logic for the_A_block.

Clearly mark registers with edge-trigger symbols.

Show adders as boxes.

(b) An engineer fears that even with optimization the logic for the_A_block will contain more adders than
necessary because of the way the case statement is used. Re-write the case statement and surrounding code
so that even without optimization one adder is used. (Don’t count the adders used to compute multipli-

cand_X_3 and bit.)

Re-write block to eliminate chance of unnecessary adders.

7

The material in Problems 5 and 6 was covered only one time and will not be covered again. Please ignore

these questions.

Problem 5: [5 pts] A new MIPS implementation is being designed for a customer. Energy consumption
can be reduced by retrieving register values only for those instructions that use them. The logic to detect
whether the registers will be used requires 100 gates. The static power usage of these gates will reduce
the energy savings by 50%. For a MIPS-like instruction set which is identical except for encoding (that is,
the assembly language is the same but the encoded instruction differ) almost no logic is needed to detect
whether a register is used and so the full energy savings can be realized. Since the MIPS-like instruction
set has a different encoding than MIPS, programs will have to be recompiled before they can run on the
implementation. An implementation of just MIPS will run existing code.

In summary, the ordinary MIPS implementation will save some energy, but can run existing code unmodified.
The MIPS-like implementation will save more energy, but code needs to be re-compiled.

Consider two types of customers: one that runs large data centers, and one that makes set-top boxes for
cable companies (which are government regulated utilities).

(a) Describe how receptive the data-center operator would be to the MIPS-like implementation. What
arguments would you need to make in its favor?

Data center customer receptiveness to MIPS-like implementation?

Arguments that can be made for it to them:

(b) Describe how receptive the cable box manufacturer will be to the MIPS-like implementation. What might
persuade them to choose the MIPS-like implementation?

Cable box customer receptiveness to MIPS-like implementation?

Arguments that can be made for it to them:

Problem 6: [5 pts] Analysis of a new MIPS implementation indicates that if registers r1 to r9 are written
with a particular set of values then the contents of r31 will replaced with the contents of r10. This will only
occur with one exact set of values in r1-r9, that’s one set out of 2256

≈ 1.16 × 1077 possible. Such a set of
values are essentially impossible to occur by chance. Fixing this problem will delay the release of the MIPS
implementation by four months.

Should this problem be fixed? Explain.

8

Problem 7: [20 pts] Answer each question below.

(a) What is wrong with the following statement: “An assembler should recognize just a few pseudo instruc-
tions, such as nop for MIPS, but adding too many more pseudo instructions would make the hardware too
complicated.”

Why statement is wrong:

(b) Technology mapping is one of the steps taken by a typical synthesis program.

What happens during technology mapping?

(c) Show the IEEE 754 single-precision representation of 1280 (which is 210 + 28). Just show the different
parts, sign, biased exponent, and significand; there is no need to show it as a single hexadecimal number.

Show IEEE 754 single-precision rep. of 1280.

IEEE Single:

S

31

E

30 23

F

22 0

(d) The functional simulation (single-cycle) implementation of MIPS presented in class uses more hardware
than the multi-cycle implementation.

Provide an example of how it uses more hardware.

Explain why the single-cycle implementation must use more hardware than the multi-cycle implementation.

9

EE 3755 Fall 2012 Final Exam Appendix

Multi-cycle MIPS Implementation

Studying for the Fall 2013 or later final? See note at the beginning of Problem 1.

Name:

module cpu(exc,data_out,addr,size,we,data_in,mem_error_in,reset,clk);

input [31:0] data_in;

input [2:0] mem_error_in;

input reset,clk;

output [7:0] exc;

output [31:0] data_out, addr;

output [1:0] size;

output we;

reg [31:0] data_out, addr;

reg [1:0] size;

reg we;

reg [7:0] exc;

// MIPS Registers

//

reg [31:0] gpr [0:31];

reg [31:0] pc, npc;

reg [31:0] ir;

// Instruction Fields

//

reg [4:0] rs, rt, rd, sa;

reg [5:0] opcode, func;

reg [25:0] ii;

reg [15:0] immed;

// Values Derived From Immediates and Read From Register File

//

reg [31:0] simmed, uimmed;

reg [31:0] sa_val;

reg [31:0] rs_val, rt_val;

reg [75:0] bndl;

// ALU Connections

//

wire [31:0] alu_out;

reg [31:0] alu_a, alu_b;

reg [5:0] alu_op;

// Processor Control Logic State

//

reg [3:0] state;

reg [4:0] wb_rd; // Register number to write.

reg me_we; // we value to use in state st_me

reg [1:0] me_size; // size value to use in state st_me

alu our_alu(alu_out, alu_a, alu_b, alu_op);

// Values for the MIPS funct field.

//

parameter F_sll = 6’h0; parameter F_add = 6’h20;

10

parameter F_srl = 6’h2; parameter F_sub = 6’h22;

parameter F_or = 6’h25;

// Values for the MIPS opcode field.

//

parameter O_rfmt = 6’h0; parameter O_andi = 6’hc;

parameter O_j = 6’h2; parameter O_ori = 6’hd;

parameter O_beq = 6’h4; parameter O_lui = 6’hf;

parameter O_bne = 6’h5; parameter O_lw = 6’h23;

parameter O_addi = 6’h8; parameter O_lbu = 6’h24;

parameter O_slti = 6’ha; parameter O_sw = 6’h2b;

parameter O_sb = 6’h28;

parameter O_xxx = 6’h30; // XXX

// Processor Control Logic States

//

parameter ST_if = 1; parameter ST_ex_addr = 5;

parameter ST_id = 2; parameter ST_ex_cond = 6;

parameter ST_ex = 3; parameter ST_ex_targ = 7;

parameter ST_me = 4;

parameter ST_xxx_1 = 8; // XXX

parameter ST_xxx_2 = 9; // XXX

// ALU Operations

//

parameter OP_nop = 6’d0; parameter OP_or = 6’d5;

parameter OP_sll = 6’d1; parameter OP_and = 6’d6;

parameter OP_srl = 6’d2; parameter OP_slt = 6’d7;

parameter OP_add = 6’d3; parameter OP_seq = 6’d8;

parameter OP_sub = 6’d4;

parameter R0 = 5’d0;

/// Set Memory Connection Values: addr, we, and size.

//

always @(state or pc or alu_out or me_size or me_we)

case (state)

ST_if : begin addr = pc; we = 0; size = 3; end

ST_xxx_2: begin addr = alu_out; we = me_we; size = me_size; end // XXX

ST_me : begin addr = alu_out; we = me_we; size = me_size; end

default : begin addr = pc; we = 0; size = 0; end

endcase

always @(posedge clk)

if (reset) begin

state = ST_if;

exc = 0;

pc = 32’h400000;

npc = pc + 4;

end else

case (state)

/// Instruction Fetch

ST_if:

begin

ir = data_in;

state = ST_id;

end

/// Instruction Decode (and Register Read)

ST_id:

begin

11

{opcode,rs,rt,rd,sa,func} = ir;

ii = ir[25:0];

immed = ir[15:0];

simmed = { immed[15] ? 16’hffff : 16’h0, immed };

uimmed = { 16’h0, immed };

rs_val = gpr[rs];

rt_val = gpr[rt];

sa_val = {26’d0,sa};

// Set alu_a, alu_b, alu_op, and wb_rd.

//

case (opcode)

O_rfmt:

// R-Format Instructions

case (func)

F_add: bndl = {rd, rs_val, OP_add, rt_val};

F_sub: bndl = {rd, rs_val, OP_sub, rt_val};

F_sll: bndl = {rd, sa_val, OP_sll, rt_val};

default:

begin bndl = {rd, sa_val, OP_sll, rt_val}; exc = 1; end

endcase

// I- and J-Format Instructions

O_lbu: bndl = {rt, rs_val, OP_add, simmed };

O_sb: bndl = {R0, rs_val, OP_add, simmed };

O_lui: bndl = {rt, 32’d16, OP_sll, uimmed };

O_addi: bndl = {rt, rs_val, OP_add, simmed };

O_andi: bndl = {rt, rs_val, OP_and, uimmed };

O_ori: bndl = {rt, rs_val, OP_or, uimmed };

O_slti: bndl = {rt, rs_val, OP_slt, simmed };

O_j: bndl = {R0, rs_val, OP_nop, simmed };

O_bne, O_beq: bndl = {R0, rs_val, OP_seq, rt_val };

O_xxx: bndl = {rt, rs_val, OP_add, simmed }; // XXX

default: begin bndl = {R0, rs_val, OP_seq, rt_val }; exc = 1; end

endcase

{ wb_rd, alu_a, alu_op, alu_b } = bndl;

data_out = rt_val;

// Set me_size and me_wb

//

case (opcode)

O_lbu : begin me_size = 1; me_we = 0; end

O_sb : begin me_size = 1; me_we = 1; end

O_xxx : begin me_size = 3; me_we = 0; end // XXX

default : begin me_size = 0; me_we = 0; end

endcase

pc = npc;

// Set npc, branch instruction may change npc.

//

case (opcode)

O_j : npc = { pc[31:28], ii, 2’b0 };

default : npc = pc + 4;

endcase

case (opcode)

O_lbu, O_sb : state = ST_ex_addr;

12

O_bne, O_beq : state = ST_ex_cond;

O_j : state = ST_if;

O_xxx : state = ST_xxx_1; // XXX

default : state = ST_ex;

endcase

end

/// Execute -- ALU instructions

ST_ex:

begin

if (wb_rd) gpr[wb_rd] = alu_out;

state = ST_if;

end

/// Execute -- Compute Effective Address for Loads and Stores

ST_ex_addr:

begin

state = ST_me;

end

/// Execute -- Compute Branch Condition

ST_ex_cond:

begin

if (opcode == O_beq && alu_out

|| opcode == O_bne && !alu_out) begin

alu_a = pc;

alu_b = simmed << 2;

alu_op = OP_add;

state = ST_ex_targ;

end else begin

state = ST_if;

end

end

/// Execute -- Compute Branch Target

ST_ex_targ: begin npc = alu_out; state = ST_if; end

/// Memory

ST_me:

begin

if (wb_rd) gpr[wb_rd] = data_in;

state = ST_if;

end

/// XXX

ST_xxx_1: begin state = ST_xxx_2; end // XXX

ST_xxx_2: // XXX

begin // XXX

alu_a = data_in; alu_b = rt_val; alu_op = OP_add; // XXX

state = ST_ex; // XXX

end // XXX

default:

begin

$display("Unexpected state.");

$stop;

end

endcase

endmodule

13

module alu(alu_out,alu_a,alu_b,alu_op);

output [31:0] alu_out;

input [31:0] alu_a, alu_b;

input [5:0] alu_op;

reg [31:0] alu_out;

// Control Signal Value Names

parameter OP_nop = 0;

parameter OP_sll = 1;

parameter OP_srl = 2;

parameter OP_add = 3;

parameter OP_sub = 4;

parameter OP_or = 5;

parameter OP_and = 6;

parameter OP_slt = 7;

parameter OP_seq = 8;

always @(alu_a or alu_b or alu_op)

case (alu_op)

OP_add : alu_out = alu_a + alu_b;

OP_and : alu_out = alu_a & alu_b;

OP_or : alu_out = alu_a | alu_b;

OP_sub : alu_out = alu_a - alu_b;

OP_slt : alu_out = {alu_a[31],alu_a} < {alu_b[31],alu_b};

OP_sll : alu_out = alu_b << alu_a;

OP_srl : alu_out = alu_b >> alu_a;

OP_seq : alu_out = alu_a == alu_b;

OP_nop : alu_out = 0;

default : begin alu_out = 0; $stop; end

endcase

endmodule

14

