Name

Computer Organization

EE 3755
Practice Midterm Examination

23 October 2001

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8

Alias Exam Total

Good Luck!

Problem 1: Add Verilog code to the module below for the carry signals and sum[3] using the
generate and propagate signals. Hint: This is straight from the notes. (10 pts)

module cla_3(sum,a,b);
input [2:0] a, b;
output [3:0] sum;

wire [2:0] g, p, carry;

assign carry[0] =
assign carry[1] =
assign carry[2] =
assign sum[3] =

cla_slice sO0(sum[0],g[0],p[0],a[0],b[0],carry[0]);
cla_slice si(sum[1],g[1],p[1],a[1],b[1],carry[1]);
cla_slice s2(sum[2],g[2],p[2],al[2],b[2],carry[2]);

endmodule

Problem 2: Complete the module below so that it determines whether its input, a floating point
number in IEEE 754 single format, is positive, zero, negative, and whether it is an integer. Output
pos is 1 if the input is positive, neg is 1 if it’s negative, etc. The solution can ignore special values
(£o00, NaN, subnormals, etc.) (30 pts)

module fp_flags(pos,zero,neg,int,single);
input [31:0] single;
output pos, zero, neg, int;

endmodule

Problem 3: The for loop in the code below looks harmless but is actually an infinite loop. Why?
Hint: It has to do with the way i is declared. (10 pts)

module iloop(z,a);
input [31:0] a;

output Z;
reg [4:0] i;
reg s, Z;

initial begin
s = 0;
for(i=0; i<32; i=i+1) s = s | al[il;
z = Is;

end

endmodule

Problem 4: Consider the adder modules below.(10 pts)
(a) What kind of adders are these?

(b) How do the speed of the two adders compare?

(¢) Compare the amount of hardware that the adders will synthesize into. How is the second adder
penny wise and £ foolish?

module add_1(sum,a,b,clk);
input [31:0] a,b; input clk; output sum;
reg [31:0] sum; integer i; reg carry;

always @(posedge clk)
begin

carry = 0;

for(i=0; i<31; i=i+1) begin

sum[i] = ~ali] & “b[i] & carry |
“ali]l & ©bl[i] & “carry |
alil & "p[i] & “carry |
alil & ©bli] & carry;

carry = ali] & b[i] | b[i] & carry | ali] & carry;

end
end

endmodule

module add_2(sum,a,b,clk);
input [31:0] a,b; input clk; output sum;
reg [31:0] sum; integer i reg carry;

always @(posedge clk)
begin
i=1i+1;
if(i == 32) begin carry = 0; i = 0; end

sum[i] = ~ali] & “b[i] & carry |
“alil & bl[i]l & “carry |
alil & “bl[i] & “carry |
alil & bl[i] & carry;

carry = ali]l & b[i] | bl[i] & carry | a[i] & carry;
end

endmodule

Problem 5: Consider the module below. (10 pts)
module prefix_xor_4(x,a);

input [3:0] a;

output [3:0] x;

assign x[0] = a[0];

xor x1(x[1],a[0],al1]);

xor x2(x[2],x[1],a[2]);

xor x3(x[3],x[2],al3]);
endmodule

(a) Suppose that each gate has a delay of one unit. How long would it take to compute the result?

(b) Suppose during a run of the simulator on the code above new inputs arrived at t = 100. At what
simulated time would the results be available? Hint: The first part is intentionally misleading.

(¢) How would timing obtained after synthesis relate to the times used to solve the first two parts?

Problem 6: In the module below fill in the values for ¢, whether the corresponding addition
overflowed, and fix the last assignment. (10 pts)

module sums();

reg [3:0] a, b, c;
reg [5:0] d;

initial begin

a = 4°b0101; b = 4’°b0001; c = a + b;

// Unsigned decimal: c = Overflow?
// Signed decimal: ¢ = Overflow?
a=-6; b=4"b0001; c = a + b;

// Unsigned decimal: ¢ = Overflow?
// Signed decimal: ¢ = Overflow?
a=-6; b =4"b0001; c = a + b;

// Unsigned decimal: c = Overflow?
// Signed decimal: c = Overflow?

a = 4’v1101; b = 4°b1100; c = a + b;

Overflow?

// Unsigned decimal: ¢

// Signed decimal: ¢ Overflow?

// Suppose c and d are used for signed quantities.
// Fix the assignment below.
d = c;

end

endmodule

Problem 7: Convert the module below to an explicit structural form. (10 pts)

module to_str(x,s,a,b);
input [1:0] s;

input a, b;

output X;

assign x = s == 2 7 a : b;
endmodule

Problem 8: Show the longhand steps needed to multiply 001001115 x 001001115 using radix-4
Booth recoding. (10 pts)

