April 13 ,2005
 EE3755 EXAM 2:

Do not turn over the page till I say so.

Some problems are very easy so do not spend

Too much time on them.

If you think a problem is difficult, try to solve

The easy ones First.

Name:

Problem 01(10pts) 03mins (how much did you spend? Min)

Problem 02(10pts) 03mins (how much did you spend? Min)
Problem 03(10pts) 03mins (how much did you spend? Min)
Problem 04(08pts) 04mins (how much did you spend? Min)
Problem 05(08pts) 02mins (how much did you spend? Min)
Problem 06(06pts) 03mins (how much did you spend? Min)
Problem 07(10pts) 05mins (how much did you spend? Min)
Problem 08(08pts) 02mins (how much did you spend? Min)
Problem 09(15pts) 08mins (how much did you spend? Min)
Problem 10(15pts) 15mins (how much did you spend? Min)

Bonus(2): 2mins (Fill out how much did you spend)

Total 102pts; 50 Min.
Problem 1 : Convert the following numbers:

(Estimated Time to Answer(ETA) 3mins: 10pts)
Hint (3/8) = 0.375

a) Decimal 15 to 8-bit Binary: 2pts

00001111

 b) Decimal -15 to 8-bit Binary(2’s complement form):2pts

11110001

c) Decimal 15.375 to Binary (as many bits as needed):2pts

1111.011

d) Decimal -15.375 to IEEE 754 Single Precision (Show in hexadecimal):4pts

1 10000010 11101100 00000---

1100 0001 0111 0110 00…..

0xc1760000
##For bonus: How much did you spend? Mins##
Problem 2: Fill in the values for x below.(ETA 3mins: 10 pts) ##

module opp_example();

reg [7:0] x,a;

 reg [3:0] b,c,d;

 reg [2:0] s;

initial begin

a = 19;

x = a < 10 ? 10 : a < 20 ? 20 : 30; //x = 20
 b= 4'h6;

 c= 4'b0001;

 x = b & c; // x = 0
 x = b && c; // x = 1
 b = 4'b0001;

 x = { 3'd2,1'h1,b}; // x = 01010001 =81
x = 8'b00001011;

 s = 2;

 x = x << s; // x = 00101100 =44
 b = -3;

 c = 1;

 x = b > c ; // x = 1

 // explain why? Negative number = big positive at unsigned 1pts.
 b = -1;

 c = 3;

 x = b <= c; // x = 0
 b = -1;

 c = 15;

 x = b === c; // x = 1
 b = 2;

 c = 3;

 x = b == c; //x = 0

 end

endmodule;
##For bonus: How much did you spend? Mins##
Problem 3: Complete the module (ETA 3mins: 10pts):
answer at ##; There are five of them.
module three_bit_Booth(prod,ready,multiplicand,multiplier,start,clk);

 input [15:0] multiplicand, multiplier;

 input start, clk;

 output prod;

 output ready;

 reg [32:0] product;

 wire [31:0] prod = product[31:0];

 reg [3:0] bit;

 wire ready = !bit;

 reg d;

 initial bit = 0;

 wire [16:0] multsx = {multiplicand[15],multiplicand};

 always @(posedge clk)

 if(ready && start) begin

 bit = 8;

 product = { 17'd0, multiplier };

 d = 0;

 end else if(bit) begin

 case ({product[1:0],d})

 3'b001: product[32:16] = product[32:16] + multsx;

3'b010: product[32:16] = ##product[32:16] + multsx;

 3'b011: product[32:16] = ##product[32:16] + 2 * multiplicand;

 3'b100: product[32:16] = ##product[32:16] - 2 * multiplicand;

 3'b101: product[32:16] = ##product[32:16] - multsx;

 3'b110: product[32:16] = ##product[32:16] - multsx;

 endcase

 d = product[1];

 product = { product[32], product[32], product[32:2] };

 bit = bit - 1;

 end

endmodule

##For bonus: How much did you spend? Mins##
Problem 4: Complete the module.(ETA 4mins: 8pts)

///Complete carry[0] to carry[4]

// A 5-bit CLA using five cla slice parts. The generate and propagate

// signals are used to produce the carry signals.

module cla_5(sum,cout, a,b,cin);

 input [4:0] a, b;

 input cin;

 output [4:0] sum;

 output cout;

 wire [4:0] g, p, carry;

 /// Logic for Carry Signals

 ###########################

assign carry[0] = g[0] | cin & p[0];

 assign carry[1] = g[1] | g[0] & p[1] |

 cin & p[0] & p[1];

 assign carry[2] = g[2] | g[1] & p[2] |

 g[0] & p[1] & p[2] |

 cin & p[0] & p[1] & p[2];

 assign carry[3] = g[3] | g[2] &p[3] |

 g[1] &p[2] & p[3] |

 g[0] & p[1] & p[2] &p[3] |

 cin & p[0] & p[1] & p[2] & p[3];

##############################

 assign carry[4] = you don’t have
 to write code for this.

 assign sum[0] = p[0] ^ cin;

 assign sum[1] = p[1] ^ carry[0];

 assign sum[2] = p[2] ^ carry[1];

 assign sum[3] = p[3] ^ carry[2];

 assign sum[4] = p[4] ^ carry[3];

 assign cout = carry[4];

 cla_slice_part s0(g[0],p[0],a[0],b[0]);

 cla_slice_part s1(g[1],p[1],a[1],b[1]);

 cla_slice_part s2(g[2],p[2],a[2],b[2]);

 cla_slice_part s3(g[3],p[3],a[3],b[3]);

 cla_slice_part s4(g[4],p[4],a[4],b[4]);

endmodule

 ##For bonus: How much did you spend? Mins##
Problem 5: Name the four basic steps of synthesis(ETA 2mins: 8pts)

(1) Synthesize to RTL (Inference) (2) Technology Mapping (3) Optimization

 (4) Place and Route

Problem 6: The following module my_loop is not synthesizable and is not working. (ETA 3mins: 6pts)
module my_loop(a,b);

input [15:0] b;

output a;

reg [3:0] a;

reg [3:0] i;

integer s;

initial begin

s = 0;

for(i=0; i<16; i=i+1) s = s + a[i];

a = s;
#5;

end

endmodule

a) why is the above module not working?

Loop index should be at least 5bits long reg[4:0] i
b) why is the above module not synthesizable? Delay initial
##For bonus: How much did you spend? Mins##
Problem 7: Draw the figure for the module neq_slice_es and nequal(ETA 5mins 10pts).

module neq_slice_es(eo,a,b,ei);

 input a, b, ei;

 output eo;

 wire aneb, aeqb;

 xor x1(aneb,a,b);

 and a1(eo,aneb,ei);

endmodule

module nequal(eq,a,b);

 input [1:0] a, b;

 output eq;

 wire e1;

 neq_slice_es es1(e1,a[1],b[1],1’b1);

 neq_slice_es es0(eq,a[0],b[0],e1);

endmodule

##For bonus: How much did you spend? Mins##

Problem 8: BFA with delays(ETA 2mins: 8 pts).

 Suppose "a" changes at t=50 and "b" changes at t=200.

 When do sum and cout change?

 module bfa_implicit_d(sum,cout,a,b,cin);

 input a,b,cin;

 output sum,cout;

 assign #3 sum =

 ~a & ~b & cin |

 ~a & b & ~cin |

 a & ~b & ~cin |

 a & b & cin;

assign #2 cout = a & b | b & cin | a & cin;
endmodule
##For bonus: How much did you spend? Mins##
 sum at 53 ,203

 cout at 52,202

Problem 9: Write a verilog program to add these two special format numbers(ETA 8mins:15pts).

There are 2 numbers in 16 bits input.
//X = (A1,A0)

//Y=(B1,B0)

 each number is 8 bits long(A1,A0,B1,and B0 are 8bits long)

 when we add two numbers at the same position,

 if the result is more than 255 , the result will be set to 255.

 This kind of operation is widely used at graphic application.

 for example:

 input X 00000001..00100011

 input Y 01110001..11111110

 result X+ Y 01110010..11111111

 module brightness(Z,X,Y)

 input [15:0] X;

 input [15:0] Y;

 output [15:0] Z;

 //solution comes here//Short code; total length is less or equal to 3 lines

 //small deduction for longer code

 always @(X or Y) begin

 Z[15:8] = (X[15:8] + Y [15:8]) >255 ? 255 : X[15:8] + Y [15:8];
 Z[7:0] = (X[7:0] + Y [7:0]) >255 ? 255 : X[7:0] + Y [7:0];
 end

 endmodule
##For bonus: How much did you spend? Mins##
Problem 10 : Complete the module below so that it determines whether its input, a floating point number in IEEE 754 single format, is positive, zero, negative, and whether it is an integer.

Output pos is 1 if the input is positive, neg is 1 if it's negative, etc.

(ETA 15mins: 15pts)

module fp_flags(pos,zero,neg,int,single);

input [31:0] single;

output pos, zero, neg, int;

##For bonus: How much did you spend? Mins##
//Solution

reg int;

reg sign;

reg [7:0] exp;

reg [22:0] frac;

reg zero, pos, neg;

reg [5:0] loc;

integer i;

reg found;

always @(single) begin

sign = single[31];

exp = single[30:23];

frac = single[22:0];

zero = !single[30:0];

pos = !sign && !zero;

neg = sign && !zero;

found = 0;

for(i=0; i<23; i=i+1)if(!found && frac[i]) begin loc = i; found = 1; end

 if(!found) loc = 23;

 int = zero || loc + exp >= 150;
end
endmodule
PAGE
9

