EE 3755 Homework 2 Due: Oct. 28.
Estimated time to solve:
Prob.1 5 minutes.(10pts)
Prob.2 4 Hours.(65pts)
Prob.3 15minutes.(15pts)
Having Script File 5minutes.(10pts)

Total 4 hours and 25minutes.

How to submit?
// No hard copy.

// Name your program file as hw2.v

// Name your script file as hw2.txt

// Leave your program file(hw2.v) and

// your script file(hw2.txt) on the class account.
Finish your program file(hw2.v) first, then do the followings:

Use “script hw2.txt “ command // To take a snap shot of your program. If you don’t know
// script command, look at the handout.

Use “cat hw2.v” command // To display contents of your program.

Use “ncverilog hw2.v” //To run your program.
then stop the script.
Example) SUN>script hw2.txt

 SUN>cat hw2.v

 SUN>ncverilog hw2.v

 SUN> (stop script by pressing CTRL-D)

#Do all your work on hw2.v file
After carefully read the problem description, write code on the template file(hw2.v).

Most of the code is given on the template file.

You only have to add about 20 -30 lines of code on the module serial_taggeddata_adder(result,v,ck);

Problem description##

You are required to build a mini processing unit. module mini_processing_unit(v,ck);
The unit will receive a command at every clock cycle.

After receiving the command, you have to process data in the data memory with the command.

You have to implement four commands(ADD,SUB,MULT, and PRINT).

The code for ADD is 001.

The code for SUB is 010.

The code for MULT is 011.

The code for PRINT is 100.

The rule of processing is these followings.
Each command will read two operands and save back one result.

Pay attention to the contends of data_memory from the example below.

 When the command is ADD, you will read two operands(numbers) from the data memory and you will add those two numbers and save the result back to the data memory.

 When the command is SUB, you will read two operands(numbers) from the data memory and you will subtract those two numbers and save the result back to the data memory.

 When the command is MULT, you will read two operands(numbers) from the data memory and you will multiply those two numbers and save the result back to the data memory.

 When the command is PRINT, you will read one operand(number) from the data memory and you will print the operand(number) and stop.

Look at the example below.
instruction memory: the data memory.
ADD 10

SUB 8

ADD 6
PRINT 4

 2

after finish the first command(ADD,10+8), the data memory.
 18

 6

 4

 2

after finish the second command(SUB, 18-6) the data memory.
 12

 4

 2

After finish the third command(ADD,12+4), the data memory.
 16

 2

then after finish the fourth command, you will print “16” and stop.

##End of the problem description

//Template
//Copy this template and name it "hw2.v".

// Problem 0:
// Write down your name and your account here

// Your Name : #######

// Your Account: #######

//

//Problem 1:(10pts)
//Look at the memory modules below and answer.
//The memory units contain data and operators.

// What will be printed?

//Answer:
//(hint: think about the example above)
//

//Instruction Memory Module

//Look at it and give an answer for the problem 1.

module instruction_memory();

 reg [3:0] mem [7:0];

 initial

 begin

 mem[0] = 1; //add

 mem[1] = 1; //add

 mem[2] = 2; //sub

 mem[3] = 4; //print(end)

 mem[4] = 2;

 mem[5] = 2;

 mem[6] = 2;

 mem[7] = 2;

 end

 endmodule

//Instruction Memory Module

module data_memory();

 reg [7:0] mem [7:0];

 initial

 begin

 mem[0] = 15;

 mem[1] = 12;

 mem[2] = 11; //

 mem[3] = 10; //

 mem[4] = 8; //

 mem[5] = 6; //

 mem[6] = 4;

 mem[7] = 2;

 end

 endmodule

//Look at instruction_memory and data_memory, and give an answer for the problem 1.

//You don't have to understand this code.

//This module instruction_memory_read will read instruction from memory.

module instruction_memory_read(v,ck);

 input ck;

 output [7:0] v;

 reg [7:0] v,local_v,index,cnt;

 instruction_memory i_m();

 initial index = 0;

 always @(ck)

 begin

 v = i_m.mem[index];

 index = index +1;

 end

endmodule

// //////

//Problem 2 Complete the module so it can perform the required functionality(65pts).
module mini_processing_unit(v,ck);

 input ck;

 input [7:0] v;

 reg[7:0] data1,data2,result;

 reg[7:0] index;

 initial index = 0;

 data_memory dm();

 always @(ck)

 begin

 #1;
/// Write down your code here

/// It should contain this code: $display("print value = %d\n",data1);

/// And this : #1 $stop; //Why #1 before $stop?

 //Answer: you give time to the simulator to do

 //something before it stops.

/// The code length will be less than 30 lines.

/// There will be no penalty for a little bit longer code

// as long as your program produces right answer

// You may declare more variables and use them.

//Hint use dm.mem[index] when you read data and write data to the data_memory.

// for example

// data1 = dm.mem[index];

//dm.mem[index] = result;

end endmodule //End of your solution for problem 2.

//

////////////////////////////Do not modify this test_all module//

module test_all();

 integer i,j;

 reg ck;

 wire [7:0] vs,vs2;

 initial ck = 0;

 initial begin

 for(i = 1; i<= 80; i = i+ 1)

 begin

 #10;

 ck = ~ck;

 end

 end

 instruction_memory_read i_m_r(vs,ck);

 mini_processing_unit m_p_u(vs,ck);

endmodule
// Problem 3: Convert the following numbers. (15pts)
// 3.1) Decimal 6 to 8-bit Binary: (2pts)
// Write your answer here;
// 3.2) Decimal -6 to 8-bit Binary (2pts)
// Write your answer here:
// 3.3) Decimal 6.875 to Binary (as many bits as needed) (3pts)

// Write your answer here:
// 3.4) Decimal -6.875 to IEEE 754 Single Precision (8pts)

// (Show in hexadecimal):

// Write your answer here:
